全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

天然纤维素物质模板制备功能纳米材料研究进展

DOI: 10.1360/972013-1242, PP. 1369-1381

Keywords: 纤维素,纳米材料,仿生材料,模板合成,表面溶胶-凝胶法

Full-Text   Cite this paper   Add to My Lib

Abstract:

自然生物物质特殊的天然结构赋予其人工材料所难以比拟的优异功能,是构建人造功能纳米结构材料理想的模板物质.天然纤维素物质作为一种常见的天然高分子化合物,从宏观到分子层次的独特阶层结构及其在纳米层级上的多孔网状形貌可期赋予以其为模板而制备的有关人造材料独特的性质和功能.以纳米层级的精度和客体基质(无机和有机的)精确复制自然纤维素物质,能够最大限度地把其优异性能(如多孔隙结构和高内表面积)引入到相应的人造材料中去.应用表面溶胶-凝胶方法可以在纤维素物质的纳米纤维表面以纳米级别的厚度可控沉积金属氧化物凝胶薄膜,特定功能的客体物质能够进一步地表面组装于其上;继之以合适的方法去除纤维素模板成分即得到相应的具有纤维素物质阶层状结构和形貌的人造功能材料.本文简述了以此为基础设计和构建新型纳米结构材料(如金属氧化物及其复合纳米材料、聚合物纳米材料、硅和金属纳米材料等)的研究进展.以自然纤维素物质为模板或支架开发功能材料是一条获得新型功能纳米材料的简便、低成本和对环境友好的捷径.

References

[1]  1 Pouget E, Dujardin E, Cavalier A, et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nat Mater, 2007, 6: 434-439
[2]  11 Klemm D, Heublein B, Fink H P, et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 2005, 44: 3358-3393
[3]  18 Zhao J, Gu Y, Huang J. Flame synthesis of hierarchical nanotubular rutile titania derived from natural cellulose substancew. Chem Commun, 2011, 47: 10551-10553
[4]  19 Gu Y, Huang J. Precise size control over ultrafine rutile titania nanocrystallites in hierarchical nanotubular silica/titania hybrids with efficient photocatalytic activity. Chem Eur J, 2013, 19: 10971-10981
[5]  20 Ranade M R, Navrotsky A, Zhang H Z, et al. Energetics of nanocrystalline TiO2. Proc Natl Acad Sci USA, 2002, 99: 6476-6481
[6]  26 Kaskel S, Schlichte K, Kratzke T. Catalytic properties of high surface area titanium nitride materials. J Mol Cata A: Chem, 2004, 208: 291-298
[7]  29 Zhu L, Ohashi M, Yamanaka S. Novel synthesis of TiN fine powders by nitridation with ammonium chloride. Mater Res Bull, 2002, 37: 475-483
[8]  31 Joshi U A, Chung S H, Lee J S. Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J Solid State Chem, 2005, 178: 755-760
[9]  32 Liu X, Zhang Y, Wu T, et al. Hierarchical nanotubular titanium nitride derived from natural cellulose substance and its electrochemical properties. Chem Commun, 2012, 48: 9992-9994
[10]  34 Sun D, Lang J, Yan X, et al. Fabrication of TiN nanorods by electrospinning and their electrochemical properties. J Solid State Chem, 2011, 184: 1333-1338
[11]  38 Pialy P, Nkoumbou C, Villiéras F, et al. Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Miner, 2008, 43: 415-435
[12]  45 Liu X, Gu Y, Huang J. Hierarchical, titania-coated, carbon nanofibrous material derived from a natural cellulosic substance. Chem Eur J, 2010, 16: 7730-7740
[13]  46 Luo Y, Liu X, Huang J. Nanofibrous rutile-titania/graphite composite derived from natural cellulose substance. J Nanosci Nanotechnol, 2013, 13: 582-588
[14]  47 Gu Y, Liu X, Niu T, et al. Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres. Chem Commun, 2010, 46: 6096-6098
[15]  48 Huang J, Kunitake T, Onoue S. Facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticles. Chem Commun, 2004, 1008-1009
[16]  49 Liu X, Luo Y, Wu T, et al. Antibacterial activity of hierarchical nanofibrous titania-carbon composite material deposited with silver nanoparticles. New J Chem, 2012, 36: 2568-2573
[17]  51 Huang J, Ichinose I, Kunitake T. Nanocoating of natural cellulose fibers with conjugated polymer: Hierarchical polypyrrole composite materials. Chem Commun, 2005, 1717-1719
[18]  52 Gu Y, Huang J G. Fabrication of natural cellulose substance derived hierarchical polymeric materials. J Mater Chem, 2009, 19: 3764-3770
[19]  2 Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385: 420-423
[20]  3 Anderson M W, Holmes S M, Hanif N, et al. Hierarchical pore structures through diatom zeolitization. Angew Chem Int Ed, 2000, 39: 2707-2710
[21]  4 Dong A, Wang Y, Tang Y, et al. Zeolitic tissue through wood cell templating. Adv Mater, 2002, 14: 926-929
[22]  5 Kim Y. Small structures fabricated using ash-forming biological materials as templates. Biomacromolecules, 2003, 4: 908-913
[23]  6 Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chem Commun, 2003, 2784-2785
[24]  7 Huang J, Wang X, Wang Z. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett, 2006, 6: 2325-2331
[25]  8 Cook G, Timms P L, G?ltner-Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angew Chem Int Ed, 2003, 42: 557-559
[26]  9 Unocic R R, Zalar F M, Sarosi P M, et al. Anatase assemblies from algae: Coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. Chem Commun, 2004, 796-797
[27]  10 Caruso R A, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater, 2001, 13: 3272-3282
[28]  12 Shin Y, Li X, Wang C, et al. Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Adv Mater, 2004, 16: 1212-1215
[29]  13 Pan L, Huang H, Lim C K, et al. TiO2 rutile-anatase core-shell nanorod and nanotube arrays for photocatalytic applications. RSC Adv, 2013, 3: 3566-3571
[30]  14 Tsai C C, Teng H. Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater, 2004, 16: 4352-4358
[31]  15 Yang D, Qi L, Ma J. Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv Mater, 2002, 14: 1543-1546
[32]  16 Huang J, Kunitake T. Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc, 2003, 125: 11834-11835
[33]  17 Gu Y, Liu X, Niu T, et al. Titania nanotube/hollow sphere hybrid material: Dual-template synthesis and photocatalytic property. Mater Res Bull, 2010, 45: 536-541
[34]  21 Luo Y, Liu X, Huang J. Heterogeneous nanotubular anatase/rutile titania composite derived from natural cellulose substance and its photocatalytic property. CrystEngComm, 2013, 15: 5586-5590
[35]  22 Huang J, Matsunaga N, Shimanoe K, et al. Nanotubular SnO2 templated by cellulose fibers: Synthesis and gas sensing. Chem Mater, 2005, 17: 3513-3518
[36]  23 Imai H, Iwaya Y, Shimizu K, et al. Preparation of hollow fibers of tin oxide with and without antimony doping. Chem Lett, 2004, 29: 906-907
[37]  24 Aoki Y, Huang J, Kunitake T. Electro-conductive nanotubular sheet of indium tinoxide as fabricated from the cellulose template. J Mater Chem, 2006, 16: 292-297
[38]  25 Emons T T, Li J, Nazar L F. Synthesis and characterization of mesoporous indium tin oxide possessing an electronically conductive framework. J Am Chem Soc, 2002, 124: 8516-8517
[39]  27 Li G, Wang F, Jiang Q, et al. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. Angew Chem Int Ed, 2010, 49: 3653-3656
[40]  28 Dong S, Chen X, Gu L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Interfaces, 2010, 3: 93-98
[41]  30 Truong C M, Chen P J, Corneille J S, et al. Low-pressure deposition of TiN thin films from a tetrakis(dimethylamido)titanium precursor. J Phys Chem, 1995, 99: 8831-8842
[42]  33 Zhang H, Li F, Jia Q. Preparation of titanium nitride ultrafine powders by sol-gel and microwave carbothermal reduction nitridation methods. Ceram Int, 2009, 35: 1071-1075
[43]  35 Zhang Y, Liu X, Huang J. Hierarchical mesoporous silica nanotubes derived from natural cellulose substance. ACS Appl Mater Interfaces, 2011, 3: 3272-3275
[44]  36 Bao Z, Weatherspoon M R, Shian S, et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature, 2007, 446: 172-175
[45]  37 Zhang Y, Huang J. Hierarchical nanofibrous silicon as replica of natural cellulose substance. J Mater Chem, 2011, 21: 7161-7165
[46]  39 Chaturbedy P, Jagadeesan D, Eswaramoorthy M. pH-sensitive breathing of clay within the polyelectrolyte matrix. ACS Nano, 2010, 4: 5921-5929
[47]  40 Zhou M, Gu Y, Huang J. Hierarchical nanotubular clay materials derived from natural cellulose substance. Mater Res Bull, 2013, 48: 3223-3231
[48]  41 Payne E K, Rosi N L, Xue C, et al. Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew Chem Int Ed, 2005, 44: 5064-5067
[49]  42 Kumara M T, Tripp B C, Muralidharan S. Self-assembly of metal nanoparticles and nanotubes on bioengineered flagella scaffolds. Chem Mater, 2007, 19: 2056-2064
[50]  43 Gu Y, Jia D, Huang J. Hierarchical fibrous titanium metal derived from cellulose substance. CrystEngComm, 2013, 15: 8924-8928
[51]  44 Puma G L, Bono A, Krishnaiah D, et al. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper. J Hazard Mater, 2008, 157: 209-219
[52]  50 Huang J, Kaner R B. A general chemical route to polyaniline nanofibers. J Am Chem Soc, 2004, 126: 851-855
[53]  53 Gu Y, Niu T, Huang J G. Functional polymeric hybrid nanotubular materials derived from natural cellulose substances. J Mater Chem, 2010, 20: 10217-10223

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133