4 Lu Z Z, Zhang R, Li Y Z, et al. Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J Am Chem Soc, 2011, 133: 4172-4174
[3]
7 Czaja A U, Trukhan N, Muller U. Industrial applications of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1284-1293
[4]
8 Lee J Y, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts. Chem Soc Rev, 2009, 38: 1450-1459
[5]
9 Li H, Eddaoudi M, O'keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276-279
[6]
10 Hafizovic J, Bj?rgen M, Olsbye U, et al. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities. J Am Chem Soc, 2007, 129: 3612-3620
[7]
11 Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705-714
[8]
14 Fukushima T, Horike S, Inubushi Y, et al. Solid solutions of soft porous coordination polymers: Fine-tuning of gas adsorption properties. Angew Chem Int Ed, 2010, 49: 4820-4824
[9]
15 Pan Z R, Zheng H G, Wang T W, et al. Hydrothermal synthesis, structures and physical properties of four new flexible multicarboxylate ligands-based compounds. Inorg Chem, 2008, 47: 9528-9536
[10]
16 Xu Y Q, Lu J M, Li N J, et al. Pseudo-living radical polymerization using triarylmethane as the thermal iniferter. Eur Polym J, 2008, 44: 2404-2411
[11]
19 Hu J S, Qin L, Zhang M D, et al. Three self-penetrated, interlocked, and polycatenated supramolecular isomers via one-pot synthesis and crystallization. Chem Commun, 2012, 48: 681-683
[12]
20 Ouellette W, Prosvirin A V, Whitenack K, et al. A thermally and hydrolytically stable microporous framework exhibiting single-chain magnetism: structure and properties of [Co2(H0.67bdt)·20H2O. Angew Chem Int Ed, 2009, 48: 2140-2143
[13]
21 Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002, 295: 469-472
[14]
23 Yue Q, Sun Q, Cheng A L, et al. metal-organic framework based on [Zn4C(COO) clusters: Rare 3D Kagome? topology and luminescence. Cryst Growth Des, 2010, 10: 44-47
[15]
24 Blatov V A. Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct Chem, 2012, 23: 955-963
26 Allendorf M D, Bauer C A, Bhakta R K, et al. Luminescent metal-organic frameworks. Chem Soc Rev, 2009, 38: 1330-1352
[18]
1 Wang C, Lin W B. Diffusion-controlled luminescence quenching in metal-organic frameworks. J Am Chem Soc, 2011, 133: 4232-4235
[19]
2 Kreno L E, Leong K, Omar K F, et al. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105-1125
[20]
5 Cui J H, Li Y Z, Guo Z J, et al. A porous metal-organic framework based on Zn6O2 clusters: Chemical stability, gas adsorption properties and solvatochromic behavior. Chem Commun, 2013, 49: 555-557
[21]
6 Chen B L, Wang L B, Xiao Y Q, et al. A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew Chem Int Ed, 2009, 48: 508-511
[22]
12 Cui J H, Lu Z Z, Li Y Z, et al. A microporous metal-organic framework with FeS2 topology based on [Zn6(μ6-O)] cluster for reversible sensing of small molecules. Chem Commun, 2012, 48: 7967-7969
[23]
13 Ma S Q, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem Commun, 2010, 46: 44-53
[24]
17 Sheldrick G M. SHELX 97. Program for Crystal Structure Refinement. G?ttingen: University of G?ttingen, 1997
[25]
18 Cui J H, Lu Z Z, Li Y Z, et al. Five novel coordination polymers based on a C-centered triangular flexible ligand. Cryst Growth Des, 2012, 12: 1022-1031
[26]
22 Kesanli B, Cui Y, Smith M R, et al. Highly interpenetrated metal-organic frameworks for hydrogen storage. Angew Chem Int Ed, 2005, 44: 72-75
[27]
27 Guo H D, Guo X M, Batten S R, et al. Hydrothermal synthesis, structures, and luminescent properties of seven d10 metal-organic frameworks based on 9,9-dipropylfluorene-2,7-dicarboxylic acid (H2DFDA). Cryst Growth Des, 2009, 9: 1394-1401