全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

对流和辐射边界条件下轧钢加热炉壁绝热层(火积)构形优化

DOI: 10.1360/csb2014-59-15-1417, PP. 1417-1422

Keywords: 构形理论,(火积)耗散率,对流传热,对流与辐射复合传热,平板绝热层,广义热力学优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于绝热过程(火积)耗散极值原理,以(火积)耗散率最小为优化目标,在对流传热和辐射传热边界条件下,对轧钢加热炉壁平板绝热层进行构形优化,得到平板绝热层的最优构形.结果表明对流传热边界条件时,(火积)耗散率最小的绝热层最优构形与热损失率最小的绝热层最优构形是明显不同的.(火积)耗散率最小的绝热层最优构形与热损失率最小的绝热层最优构形相比,(火积)耗散率降低了5.98%,从而使得其整体绝热性能得到提高.对流与辐射复合传热边界条件时,绝热层厚度线性增大的布置方式与等厚度绝热层和厚度线性减小的布置方式相比,绝热层(火积)耗散率分别降低了16.59%和39.72%,从而使得绝热层整体绝热性能大大提高.存在最佳常系数a2,opt使得绝热层无量纲耗散率取得最小值.绝热层最小无量纲(火积)耗散率和最大温度梯度最小值对应的最佳常系数a2,opt相差不大,这使得(火积)耗散率最小的绝热层最优构形对应的热应力也较小,从而在提高绝热层整体绝热性能的同时也有助于提高其热安全性.本文所得结果能从传热优化角度为绝热层的优化设计提供参考.

References

[1]  4 韩光泽, 朱宏晔, 程新广, 等. 导热与弹性系统及导电的相似性. 工程热物理学报, 2005, 26: 1022-1024
[2]  6 朱宏晔, 陈泽敬, 过增元. (火积)耗散极值原理的电热模拟实验研究. 自然科学进展, 2007, 17: 1692-1698
[3]  7 陈林根. (火积)理论及其应用的进展. 科学通报, 2012, 57: 2815-2835
[4]  8 Chen Q, Liang X G, Guo Z Y. Entransy theory for the optimization of heat transfer—A review and update. Int J Heat Mass Transfer, 2013, 63: 65-81
[5]  17 Xu M T. Variational principles in terms of entransy for heat transfer. Energy, 2012, 44: 973-977
[6]  18 程雪涛, 王文华, 梁新刚. 基于广义传热定律的传热与热功转换优化. 中国科学: 技术科学, 2012, 42: 1179-1187
[7]  19 Chen L G, Xiao Q H, Xie Z H, et al. T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Comm Heat Mass Transfer, 2012, 39: 1556-1562
[8]  20 冯辉君, 陈林根, 孙丰瑞. 基于(火积)耗散率最小的叶形肋片构形优化. 中国科学: 技术科学, 2012, 42: 456-466
[9]  21 冯辉君, 陈林根, 谢志辉, 等. 基于(火积)理论的H型多尺度换热器构形优化. 中国科学: 技术科学, 2013, 43: 169-177
[10]  23 Chen Q. Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization. Int J Heat Mass Transfer, 2013, 60: 156-162
[11]  29 Bejan A, Zane P J. Design in Nature. New York: Doubleday, 2012
[12]  30 陈林根. 构形理论及其应用的研究进展. 中国科学: 技术科学, 2012, 42: 505-524
[13]  33 Bejan A. How to distribute a finite amount of insulation on a wall with nonuniform temperature. Int J Heat Mass Transfer, 1993, 36: 49-56
[14]  34 李大鹏, 陈林根, 孙丰瑞. 管状表面绝热层布置的优化. 电站系统工程, 1995, 11: 29-31
[15]  38 Sahin A Z. Optimal insulation of ducts in extraterrestrial applications. Int J Energy Res, 2004, 28: 195-203
[16]  1 Guo Z Y, Zhu H Y, Liang X G. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545-2556
[17]  2 李志信, 过增元. 对流传热优化的场协同理论. 北京: 科学出版社, 2010
[18]  3 过增元, 程新广, 夏再忠. 最小热量传递势容耗散原理及其在导热优化中的应用. 科学通报, 2003, 48: 21-25
[19]  5 韩光泽, 过增元. 导热能力损耗的机理及其数学表述. 中国电机工程学报, 2007, 27: 98-102
[20]  9 柳雄斌, 孟继安, 过增元. 换热器参数优化中的熵产极值和 耗散极值. 科学通报, 2008, 52: 3026-3029
[21]  10 魏曙寰, 陈林根, 孙丰瑞. 基于矩形单元体的以 耗散最小为目标的“体点”导热构形优化. 中国科学E辑: 技术科学, 2009, 39: 278-285
[22]  11 Guo Z Y, Liu X B, Tao W Q, et al. Effectiveness-thermal resistance method for heat exchanger design and analysis. Int J Heat Mass Transfer, 2010, 53: 2877-2884
[23]  12 李秦宜, 陈群. 平板太阳能集热器传热性能的 理论优化. 科学通报, 2011, 56: 2819-2826
[24]  13 谢志辉, 陈林根, 孙丰瑞. T形肋(火积)耗散率最小与最大热阻最小构形优化的比较研究. 中国科学: 技术科学, 2011, 41: 962-970
[25]  14 肖庆华, 陈林根, 孙丰瑞. 强迫对流换热冷却的产热体(火积)耗散率最小构形优化. 科学通报, 2011, 56: 2032-2039
[26]  15 Chen L G, Wei S H, Sun F R. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54: 210-216
[27]  16 Guo J F, Huai X L. Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory. Energy, 2012, 41: 335-343
[28]  22 周兵, 程雪涛, 梁新刚. 斯特林循环输出功率优化分析. 中国科学: 技术科学, 2013, 43: 97-105
[29]  24 Cheng X T, Zhang Q Z, Xu X H, et al. Optimization of fin geometry in heat convection with entransy theory. Chin Phys B, 2013, 22: 020503
[30]  25 Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000
[31]  26 Reis A H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl Mech Rev, 2006, 59: 269-282
[32]  27 Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008
[33]  28 Bejan A, Lorente S. The constructal law and the evolution of design in nature. Phys Life Rev, 2011, 8: 209-240
[34]  31 Rocha L A O, Lorente S, Bejan A. Constructal Law and the Unifying Principle of Design. Berlin: Springer, 2013
[35]  32 Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys, 2013, 113: 151301
[36]  35 Kang D H, Lorente S, Bejan A. Constructal distribution of multi-layer insulation. Int J Energy Res, 2013, 37: 153-160
[37]  36 冯辉君, 陈林根, 谢志辉, 等. 基于(火积)耗散极值原理的轧钢加热炉壁绝热构形优化. 中国科学: 技术科学, 2012, 42: 1377-1387
[38]  37 Kalyon M, Sahin A Z. Application of optimal control theory in pipe insulation. Numer Heat Transfer, Part A, 2002, 41: 391-402
[39]  39 Sahin A Z, Kalyon M. Maintaining uniform surface temperature along pipes by insulation. Energy, 2005, 30: 637-647
[40]  40 Lorente S, Bejan A. Combined ‘flow and strength' geometric optimization: Internal structure in a vertical insulating wall with air cavities and prescribed strength. Int J Heat Mass Transfer, 2002, 45: 3313-3320
[41]  41 谢志辉, 陈林根, 孙丰瑞. 基于热流与强度复合目标的立式绝热壁构形优化. 中国科学: 技术科学, 2011, 41: 809-820
[42]  42 Al-Sanea S A, Zedan M F. Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass. Appl Energy, 2011, 88: 3113-3124
[43]  43 Ekici B B, Gulten A A, Aksoy U T. A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey. Appl Energy, 2012, 92: 211-217
[44]  44 Kayfeci M, Ke?eba? A, Gedik E. Determination of optimum insulation thickness of external walls with two different methods in cooling applications. Appl Therm Engng, 2013, 50: 217-224

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133