7 Kennedy D, Norman C, Siegfried T, et al. What don't we know? Science, 2005, 309: 75-102
[3]
8 Safont-Sempere M M, Fernández G, Würthner F. Self-sorting phenomena in complex supramolecular systems. Chem Rev, 2011, 111: 5784-5814
[4]
9 Schmidbaur H, Schier A. A briefing on aurophilicity. Chem Soc Rev, 2008, 37: 1931-1951
[5]
10 Schmidbaur H, Schier A. Aurophilic interactions as a subject of current research: An up-date. Chem Soc Rev, 2012, 41: 370-412
[6]
11 Corbett P T, Leclaire J, Vial L, et al. Dynamic combinatorial chemistry. Chem Rev, 2006, 106: 3652-3711
[7]
13 Jin Y, Yu C, Denman R J. Recent advances in dynamic covalent chemistry. Chem Soc Rev, 2013, 42: 6634-6654
[8]
15 Desiraju G R. Crystal engineering: A holistic view. Angew Chem Int Ed, 2007, 46: 8342-8356
[9]
16 苏成勇, 潘梅, 编. 配位超分子结构化学基础与进展. 北京: 科学出版社, 2010
[10]
17 Long J R, Yaghi O M. Themed issue: Metal-organic frameworks. Chem Soc Rev, 2009, 38: 1201-1508
[11]
18 Zhou H-C, Long J R, Yaghi O M. Special issue: Metal-organic frameworks. Chem Rev, 2012, 112: 673-1268
[12]
19 Peng R, Li M, Li D. Copper(I) halides: A versatile family in coordination chemistry and crystal engineering. Coord Chem Rev, 2010, 254: 1-18
[13]
23 Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res, 2010, 43: 58-67
[14]
24 Zhou X P, Li M, Liu J, et al. Gyroidal metal-organic frameworks. J Am Chem Soc, 2012, 134: 67-70
[15]
25 Wu Y, Zhou X P, Yang J R, et al. Gyroidal metal-organic frameworks by solvothermal subcomponent self-assembly. Chem Commun, 2013, 49: 3413-3415
[16]
29 Zhang X M. Hydro(solvo)thermal in situ ligand syntheses. Coord Chem Rev, 2005, 249: 1201-1219
[17]
30 陈荣, 高松, 编. 无机化学学科前沿与展望. 北京: 科学出版社, 2012
[18]
31 Li D, Wu T. Transformation of inorganic sulfur into organic sulfur: A novel photoluminescent 3-D polymeric complex involving ligands in situ formation. Inorg Chem, 2005, 44: 1175-1177
[19]
32 Li D, Wu T, Zhou X P, et al. Twelve-connected net with face-centered cubic topology: A coordination polymer based on [Cu12(μ4- SCH3)6+ clusters and CN- linkers. Angew Chem Int Ed, 2005, 44: 4175-4178
[20]
35 Zhou X P, Ni W X, Zhan S Z, et al. From encapsulation to polypseudorotaxane: Unusual anion networks driven by predesigned metal bis(terpyridine) complex cations. Inorg Chem, 2007, 46: 2345-2347
[21]
36 Hou J Z, Li M, Li Z, et al. Supramolecular helix-to-helix induction: A 3D anionic framework containing double-helical strands templated by cationic triple-stranded cluster helicates. Angew Chem Int Ed, 2008, 47: 1711-1714
[22]
37 Lin H Y, Chin C Y, Huang H L, et al. Crystalline inorganic frameworks with 56-ring, 64-ring, and 72-ring channels. Science, 2013, 339: 811-813
[23]
41 Leong W L, Vittal J J. One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem Rev, 2011, 111: 688-764
[24]
42 Hou L, Li D, Shi W J, et al. Ligand-controlled mixed-valence copper rectangular grid-type coordination polymers based on pyridylterpyridine. Inorg Chem, 2005, 44: 7825-7832
[25]
43 Cook T R, Zheng Y R, Stang P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem Rev, 2013, 113: 734-777
[26]
45 Shi W J, Ruan C X, Li Z, et al. Tuning framework formation by flexible ligand elongation and second ligating spacer variation: Increasing dimensionality and macrocycle size. CrystEngComm, 2008, 10: 778-783
[27]
46 Bu X H, Xie Y B, Li J R, et al. Adjusting the frameworks of silver(I) complexes with new pyridyl thioethers by varying the chain lengths of ligand spacers, solvents, and counteranions. Inorg Chem, 2003, 42: 7422-7430
[28]
47 Xie Y B, Li J R, Zhang C, et al. Syntheses and crystal structures of manganese(II), cadmium(II), cobalt(II), and zinc(II) complexes with 4-pyridyl dithioether ligands. Cryst Growth Des, 2005, 5: 1743-1749
[29]
50 Zhan S Z, Li M, Hou J Z, et al. Polymerizing cluster helicates into high-connectivity networks. Chem Eur J, 2008, 14: 8916-8921
[30]
51 Gao G F, Li M, Zhan S-Z, et al. Confined metallophilicity within a coordination prism. Chem Eur J, 2011, 17: 4113-4117
[31]
52 Zhan S Z, Li M, Zhou X-P, et al. When Cu4I4 cubane meets Cu3(pyrazolate)3 triangle: Dynamic interplay between two classical luminophores functioning in a reversibly thermochromic coordination polymer. Chem Commun, 2011, 47: 12441-12443
[32]
53 Zhan S Z, Li M, Ng S W, et al. Luminescent metal-organic frameworks (MOFs) as a chemopalette: Tuning the thermochromic behavior of dual-emissive phosphorescence by adjusting the supramolecular microenvironments. Chem Eur J, 2013, 19: 10217-10225
[33]
54 Zhan S Z, Li M, Zhou X P, et al. Excimer and exciplex formation in a pair of bright phosphorescent isomers constructed from Cu3(pyrazolate)3 and Cu3I3 coordination luminophores. RSC Adv, 2011, 1: 1457-1459
[34]
55 Li M, Li Z, Li D. Unprecedented cationic copper(I)-iodide aggregates trapped in “click” formation of anionic-tetrazolate-based coordination polymers. Chem Commun, 2008, 3390-3392
[35]
56 Wu T, Li M, Li D, et al. Anionic CunIn cluster-based architectures induced by in situ generated N-alkylated cationic triazolium salts. Cryst Growth Des, 2008, 8: 568-574
[36]
57 Batten S R, Champness N R, Chen X M, et al. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem, 2013, 85: 1715-1724
[37]
58 Hill R J, Long D L, Champness N R, et al. New approaches to the analysis of high connectivity materials: Design frameworks based upon 44- and 63-subnet tectons. Acc Chem Res, 2005, 38: 335-348
[38]
59 Yaghi O M, O'Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423: 705-714
[39]
65 Zhan S Z, Peng R, Lin S H, et al. An unprecedented 2-D CuSCN coordination network containing both regular and irregular [Cu3(SCN) rings supported by a tridentate N-donor ligand. CrystEngComm, 2010, 12: 1385-1387
[40]
66 Zhan S Z, Li M, Zhou X P, et al. From simple to complex: Topological evolution and luminescence variation in a copper(I) pyridylpyrazolate system tuned via second ligating spacers. Inorg Chem, 2011, 50: 8879-8892
[41]
67 Dias H V R, Diyabalanage H V K, Eldabaja M G, et al. Brightly phosphorescent trinuclear copper(I) complexes of pyrazolates: Substituent effects on the supramolecular structure and photophysics. J Am Chem Soc, 2005, 127: 7489-7501
[42]
68 Garibay S J, Stork J R, Cohen S M. The use of metalloligands in metal-organic frameworks. Prog Inorg Chem, 2009, 56: 335-378
[43]
69 Das M C, Xiang S, Zhang Z, et al. Functional mixed metal-organic frameworks with metalloligands. Angew Chem Int Ed, 2011, 50: 10510-10520
[44]
70 Ni W X, Li M, Zhou X P, et al. pH-Induced formation of metalloligand: Increasing structure dimensionality by tuning number of ligand functional sites. Chem Commun, 2007, 3479-3481
[45]
74 Pichon A. Crystal gazing: Crystal-to-crystal transformation provides a glimpse into the thermodynamics of solid-gas reactions. Nat China, 2009, doi: 10.1038/nchina.2009.212
[46]
75 Ockwig N W, Delgado-Friedrichs O, O'Keeffe M. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res, 2005, 38: 176-182
[47]
76 O'Keeffe, Peskov M A, Ramsden S J, et al. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res, 2008, 41: 1782-1789
[48]
78 O'Keeffe M, Yaghi O M. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem Rev, 2012, 112: 675-702
[49]
79 Li M, Li D, O'Keeffe M, et al. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev, 2014, 114: 1343-1370
[50]
80 Alexandrov E V, Blatov V A, Kochetkov A V, et al. Underlying nets in three-periodic coordination polymers: Topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm, 2011, 13: 3947-3958
[51]
93 Herm Z R, Wiers B M, Mason J A, et al. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, 2013, 340: 960-964
[52]
95 Yan Z, Li M, Gao H L, et al. High-spin versus spin-crossover versus low-spin: Geometry intervention in cooperativity in a 3D polymorphic iron(II)-tetrazole MOFs system. Chem Commun, 2012, 48: 3960-3962
[53]
96 Zhou H L, Lin R B, He C T, et al. Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework. Nat Commun, 2013, 4: 2534
[54]
97 Zhou H L, Li M, Li D, et al. Thermal expansion behaviors of Mn(II)-pyridylbenzoate frameworks based on metal-carboxylate chains. Sci China Chem, 2014, 57: 365-370
[55]
98 Schneider H J. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed, 2009, 48: 3924-3977
[56]
99 Zhou X P, Zhang X, Lin S H, et al. Anion-p-interaction-directed self-assembly of Ag(I) coordination networks. Cryst Growth Des, 2007, 7: 485-487
[57]
100 Frontera A, Gamez P, Mascal M, et al. Putting anion-p interactions into perspective. Angew Chem Int Ed, 2011, 50: 9564-9583
[58]
103 Hou L, Li D. A new ligand 4′-phenyl-4,2′:6′,4″-terpyridine and its 1D helical zinc(II) coordination polymer: Syntheses, structures and photoluminescent properties. Inorg Chem Commun, 2005, 8: 190-193
[59]
104 Li X Z, Li M, Li Z, et al. Concomitant and controllable chiral/racemic polymorphs: From achirality to isotactic, syndiotactic, and heterotactic chirality. Angew Chem Int Ed, 2008, 47: 6371-6374
[60]
105 Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks. Chem Rev, 2012, 112: 1126-1162
[61]
106 Kreno L E, Leong K, Farha O K, et al. Metal-organic framework materials as chemical sensors. Chem Rev, 2012, 112: 1105-1125
[62]
110 Hou Y L, Sun R W-Y, Zhou X P, et al, A copper(I)/copper(II)-salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes. Chem Commun, 2014, 50: 2295-2297
[63]
38 Huang X C, Zhang J P, Chen X M. A new route to supramolecular isomers via molecular templating: Nanosized molecular polygons of copper(I) 2-methylimidazolates. J Am Chem Soc, 2004, 126: 13218-13219
[64]
39 Kuang X, Wu X, Yu R, et al. Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. Nat Chem, 2010, 2: 461-465
[65]
40 Yu L, Li M, Zhou X P, et al. Hybrid inorganic-organic polyrotaxane, pseudorotaxane, and sandwich. Inorg Chem, 2013, 52: 10232-10234
[66]
44 Peng R, Deng S R, Li M, et al. Solvent-dependent copper(I) conformational supramolecular pseudo-polymorphs based on a flexible thioether ligand. CrystEngComm, 2008, 10: 590-597
[67]
48 Tranchemontagne D J, Mendoza-Cortés J L, O'Keeffe M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem Soc Rev, 2009, 38: 1257-1283
[68]
49 He J, Yin Y G, Wu T, et al. Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks. Chem Commun, 2006, 2845-2847
[69]
60 Zhang J P, Zhang Y B, Lin J B, et al. Metal azolate frameworks: From crystal engineering to functional materials. Chem Rev, 2012, 112: 1001-1033
[70]
61 Zhang Y B, Zhou H-L, Lin R B, et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nat Commun, 2012, 3: 642
[71]
62 Eddaoudi M, Moler D B, Li H, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res, 2001, 34: 319-330
[72]
63 Zhang X M, Fang R Q, Wu H S, et al. A twelve-connected Cu6S4 cluster-based coordination polymer. J Am Chem Soc, 2005, 127: 7670-7671
[73]
64 Zhan S Z, Li D, Zhou X P, et al. Two polyknotted topological isomers of copper(I) 3,5-bis(4-pyridyl)pyrazolates. Inorg Chem, 2006, 45: 9163-9165
[74]
71 Ni W X, Li M, Zhan S Z, et al. In situ immobilization of metalloligands: A synthetic route to homometallic mixed-valence coordination polymers. Inorg Chem, 2009, 48: 1433-1441
[75]
72 Kole G K, Vittal J J. Solid-state reactivity and structural transformations involving coordination polymers. Chem Soc Rev, 2013, 42: 1755-1775
[76]
73 Liu D, Li M, Li D. Reversible solid-gas chemical equilibrium between a 0-periodic deformable molecular tecton and a 3-periodic coordination architecture. Chem Commun, 2009, 6943-6945
[77]
77 Zhang S S, Zhan S Z, Li M, et al. A rare chiral self-catenated network formed by two cationic and one anionic frameworks. Inorg Chem, 2007, 46: 4365-4367
[78]
81 Wu T, Yi B H, Li D. Two novel nanoporous supramolecular architectures based on copper(I) coordination polymers with uniform (8, 3) and (8210) nets: In situ formation of tetrazolate ligands. Inorg Chem, 2005, 44: 4130-4132
[79]
82 Wu T, Zhou R, Li D. Effect of substituted groups of ligand on construction of topological networks: In situ generated silver(I) tetrazolate coordination polymers. Inorg Chem Commun, 2006, 9: 341-345
[80]
83 Wu T, Chen M, Li D. A coordination polymer containing inorganic buckybowl analogues. Eur J Inorg Chem, 2006, 2132-2135
[81]
84 Li Z, Li M, Zhou X P, et al. Metal-directed supramolecular architectures: From mononuclear to 3D frameworks based on in situ tetrazole ligand synthesis. Cryst Growth Des, 2007, 7: 1992-1998
[82]
85 Li Z, Li M, Zhan S Z, et al. Pcu versus lim nets: Topological variation of cyano-bridged copper(I)-tetrazole coordination frameworks caused by Cu2(azole)2-SBU versatility. CrystEngComm, 2008, 10: 978-980
[83]
86 Wen T, Li M, Zhou X P, et al. Unprecedented copper(I)-catalyzed in situ double cycloaddition reaction based on 2-cyanopyrimidine. Dalton Trans, 2011, 40: 5684-5686
88 Peng R, Wu T, Li D. A chiral coordination polymer containing copper(I) iodide layer composed of intersecting [CuI]n helices. CrystEngComm, 2005, 7: 595-598
[86]
89 Peng R, Li D, Wu T, et al. Increasing structure dimensionality of copper(I) complexes by varying the flexible thioether ligand geometry and counteranions. Inorg Chem, 2006, 45: 4035-4046
[87]
90 Peng R, Li M, Deng S R, et al. Two genuine supramolecular isomers exhibiting hierarchical resemblance and distinction. CrystEngComm, 2010, 12: 3670-3675
[88]
91 Deng H, Grunder S, Cordova K E, et al. Large-pore apertures in a series of metal-organic frameworks. Science, 2012, 336: 1018-1023
[89]
92 Bloch E D, Queen W L, Krishna R, et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science, 2012, 335: 1606-1610
[90]
94 Xiao J, Wu Y, Li M, et al. Crystalline structural intermediates of a breathing metal-organic framework that functions as a luminescent sensor and gas reservoir. Chem Eur J, 2013, 19: 1891-1895
[91]
101 Hou L, Li D. A novel photoluminescent Ag-terpyridyl complex: One-dimensional linear metal string with double-helical structure. Inorg Chem Commun, 2005, 8: 128-130
[92]
102 Pérez-García L, Amabilino D B. Spontaneous resolution, whence and whither: From enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. Chem Soc Rev, 2007, 36: 941-967
[93]
107 Ni W-X, Li M, Zheng J, et al. Approaching white-light emission from a phosphorescent trinuclear gold(I) cluster by modulating its aggregation behavior. Angew Chem Int Ed, 2013, 52: 13472-13476
[94]
108 Wang J H, Li M, Li D. A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. Chem Sci, 2013, 4: 1793-1801
[95]
109 Wen T, Zhou X P, Zhang D X, et al. Luminescent mechanochromic porous coordination polymers. Chem Eur J, 2014, 20: 644-648
1 Cram D J. The design of molecular hosts, guests, and their complexes (Nobel lecture). Angew Chem Int Ed Engl, 1988, 27: 1009-1020
[98]
2 Lehn J M. Supramolecular chemistry—Scope and perspectives—Molecules, supermolecules, and molecular devices (Nobel lecture). Angew Chem Int Ed Engl, 1988, 27: 89-112
[99]
3 Pedersen C J. The discovery of crown ethers (Nobel lecture). Angew Chem Int Ed Engl, 1988, 27: 1021-1027
6 Balzani V, Credi A, Venturi M, 著, 马骧, 田禾, 译. 分子器件与分子机器——纳米世界的概念和前景(原著第二版). 上海: 华东理工大学出版社, 2009
[102]
12 Belowich M E, Stoddart J F. Dynamic imine chemistry. Chem Soc Rev, 2012, 41: 2003-2024
[103]
14 Vogelsberg C S, Garcia-Garibay M A. Crystalline molecular machines: Function, phase order, dimensionality, and composition. Chem Soc Rev, 2012, 41: 1892-1910
[104]
20 Nitschke J R. Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly. Acc Chem Res, 2007, 40: 103-112
[105]
21 Zhou X P, Liu J, Zhan SZ, et al. A high-symmetry coordination cage from 38- or 62-component self-assembly. J Am Chem Soc, 2012, 134: 8042-8045
[106]
22 Zhou X P, Wu Y, Li D. Polyhedral metal-imidazolate cages: Control of self-assembly and cage to cage transformation. J Am Chem Soc, 2013, 135: 16062-16065
[107]
26 Hyde S T, O'Keeffe M, Proserpio D M. A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew Chem Int Ed, 2008, 47: 7996-8000
[108]
27 Chen X M, Tong M L. Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc Chem Res, 2007, 40: 162-170
[109]
28 Zhao H, Qu Z R, Ye H Y, et al. In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties. Chem Soc Rev, 2008, 37: 84-100
[110]
33 Zhou X P, Li D, Wu T, et al. Syntheses of supramolecular CuCN complexes by decomposing CuSCN: A general route to CuCN coordination polymers? Dalton Trans, 2006, 2435-2443
[111]
34 Lin S-H, Zhou X P, Li D, et al. In situ formed guanidinium cations as templates to direct fabrication of honeycomb-like CuCN networks. Cryst Growth Des, 2008, 8: 3879-3881