全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

基于土壤团聚体组分的14C分析及其在不同林龄土壤有机碳周转研究中的应用

, PP. 1354-1366

Keywords: 14C,土壤有机碳周转,团聚体组分,塞罕坝,草地造林林龄

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前关于人工造林后土壤有机碳库变化的趋势、幅度及其碳汇功能仍存在很大的不确定性.应用放射性碳(14C)方法,研究河北塞罕坝草甸草原与人工林土壤有机碳周转时间,以加深对人工造林后土壤有机碳库变化的认识.实验结果显示,14C示踪方法所估算出的人工造林后土壤有机碳周转时间可长达几十年至几百年.在草甸草原营造樟子松林后表层土壤全样以及团聚体有机碳的周转时间均明显变短,并随着林龄的增大而改变,这将导致土壤CO2通量的增加,因此,草地造林有可能削弱了表层土壤储存有机碳的能力.对不同林龄的土壤团聚体组分进行稳定同位素与14C分析,发现草甸草原营造樟子松林后土壤中年轻碳库与较老碳库对草地造林的响应存在差异在幼龄和中龄阶段,土壤中较老碳库CO2排放量的比例呈现出增加趋势,而进入成龄阶段,其比例开始下降,表明林龄对人工林土壤固碳机制有所影响.用14C方法所得到的土壤CO2通量相对较低,这可能与未能有效地从土壤团聚体中分离出较年轻碳库的组分有关.今后的研究应在发展多种组分分离方法的基础上进行碳同位素分析,以提高土壤CO2通量估算的准确性.

References

[1]  1 Post W M, Kwon K C. Soil carbon sequestration and land-use change: Processes and potential. Glob Change Biol, 2000, 6: 317-327
[2]  4 葛全胜, 戴 君虎, 何凡能, 等. 过去300年中国土地利用、土地覆被变化与碳循环研究. 中国科学D辑: 地球科学, 2008, 38: 197-210
[3]  5 黄耀, 孙文娟, 张稳, 等. 中国陆地生态系统土壤有机碳变化研究进展. 中国科学: 生命科学, 2010, 40: 577-586
[4]  6 Lal R. Soil erosion and the global carbon budget. Environ Int, 2003, 29: 437-450
[5]  7 Smith P. Carbon sequestration in croplands: The potential in Europe and the global context. Eur J Agron, 2004, 20: 229-236
[6]  10 Lal R, Follett F, Stewart B A, et al. Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci, 2007, 172: 943-956
[7]  11 郑聚锋, 程琨, 潘根兴, 等. 关于中国土壤碳库及固碳潜力研究的若干问题. 科学通报, 2011, 56: 2162-2173
[8]  12 Groenendijk F M, Condron L M, Rijkse W C. Effects of afforestation on organic carbon, nitrogen and sulfur concentrations in New Zealand hill country soils. Geoderma, 2002, 108: 91-100
[9]  18 Stevens A, van Wesemael B. Soil organic carbon dynamics at the regional scale as influenced by land use history: A case study in forest soils from southern Belgium. Soil Use Manage, 2008, 24: 69-79
[10]  19 Laganière J, Angers D A, Parè D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob Change Biol, 2010, 16: 439-453
[11]  20 Richter D D, Markewitz D, Trumbore S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 1999, 400: 56-58
[12]  27 Torn M S, Swanston C W, Castanha C, et al. Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang P M, eds. Biophysico-Chemical Processes Involving Nature Nonliving Organic Matter in Environmental Systems. Hoboken: John Wiley & Sons, 2009. 219-272
[13]  30 Nydal R, L?vseth K. Tracing bomb 14C in the atmosphere 1962-1980. J Geophys Res, 1983, 88: 3621-3642
[14]  31 Manning M R, Lowe D C, Melhuish W H, et al. The use of radiocarbon measurements in atmospheric studies. Radiocarbon, 1989, 32: 37-58
[15]  33 Jenkinson D S, Rayner J H. Turnover of soil organic-matter in some of Rothamsted classical experiments. Soil Sci, 1977, 123: 298-305
[16]  38 Steffens M, K?lbl A, K?gel-Knabner I. Alternation of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. Eur J Soil Sci, 2009, 60: 198-212
[17]  45 Stuiver M, Polach H A. Discussion: Reporting of 14C data. Radiocarbon, 1977, 19: 355-363
[18]  47 Torn M S, Lapenis A G, Timofeev A, et al. Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biol, 2002, 8: 941-953
[19]  48 Wang Y, Hsieh Y P. Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere, 2002, 49: 791-804
[20]  49 刘胜祥, 黎维平. 植物学. 北京: 科学出版社, 2007
[21]  50 Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J, 1993, 57: 1071-1076
[22]  52 Golchin A, Baldock J A, Oades J M. A model linking organic matter decomposition, chemistry, and aggregate dynamics. In: Lal R, Kimble J, Follett R, et al., eds. Soil Processes and the Carbon Cycle. Boca Raton: CRC Press, 1998. 245-266
[23]  53 Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci, 2000, 51: 595-605
[24]  55 窦森, 张继宏, 须湘成, 等. 棕壤不同粒径微团聚体中有机质特性的研究. 土壤通报, 1992, 23: 52-54
[25]  58 Kramer M G, Sollins P, Sletten R S, et al. N isotope fractionation and measures of organic matter alteration during decomposition. Ecology, 2003, 84: 2021-2025
[26]  59 Baisden W T, Amundson R, Cook A C, et al. Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Glob Biogeochem Cycle, 2002, 16: 117-132
[27]  60 Bosatta E, ?gren G I. Theoretical analysis of carbon and nitrogen dynamics in soil profies. Soil Biol Biochem, 1996, 28: 1523-1531
[28]  67 Rasse D P, Rumpel C, Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil, 2005, 269: 341-356
[29]  68 Filley T R, Boutton T W, Liao J D, et al. Chemical changes to nonaggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res, 2008, 113: G03009, doi: 10.1029/2007JG000564
[30]  72 Jackson R B, Canadell J, Ehleringer J R, et al. A global analysis of root distributions for terrestrial biomes. Oecologia, 1996, 108: 389-411
[31]  73 Odum E P. The strategy of ecosystem development. Science, 1969, 164: 262-270
[32]  74 Gove J H, Martin C W, Patil G P, et al. Plant species diversity on even-aged harvests at the Hubbard Brook experimental forest: 10 year results. Can J Forest Res, 1992, 22: 1800-1806
[33]  79 Chen C R, Condron L M, Davis M R, et al. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiate pine (Pinus radiate D. Don.). Soil Biol Biochem, 2002, 34: 487-499
[34]  80 刘畅, 任艳林, 贺金生. 草地造林40年后土壤可溶性有机碳下降. 北京大学学报(自然科学版), 2009, 45: 511-518
[35]  82 Nouvellon Y, Epron D, Marsden C, et al. Age-related changes in litter inputs explain annual trends in soil CO2 effluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry, 2011, doi: 10.1007/s10533-011-9685-9
[36]  84 葛晓改, 肖文发, 曾立雄, 等. 不同林龄马尾松凋落物基质质量与土壤养分的关系. 生态学报, 2012, 32: 852-862
[37]  87 Brady N, Weil R R. The Nature and Properties of Soils. 13th ed. Upper Saddle River: Prentice-Hall, 2002
[38]  88 Olszewska M, Smal H. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. I. Physical and sorptive properties. Plant Soil, 2008, 305: 157-169
[39]  91 邵月红, 潘剑君, 许信旺, 等. 长白山森林土壤有机碳库大小及周转研究. 水土保持学报, 2006, 20: 99-102
[40]  96 尹云锋, 蔡祖聪. 利用δ13C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率. 土壤学报, 2007, 44: 1022-1027
[41]  97 Chen Q Q, Shen C D, Sun Y M, et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, South China. Catena, 2002, 49: 217-229
[42]  98 陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量和CO2通量. 中国科学D辑: 地球科学, 2007, 37: 553-563
[43]  99 唐辉. 内蒙古典型草原围封样地土壤有机碳C-14研究. 硕士学位论文. 北京: 北京大学, 2008
[44]  100 马筱舒. 内蒙古典型草原土壤有机碳14C研究与周转速率估算. 硕士学位论文. 北京: 北京大学, 2010
[45]  103 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量. 生态学报, 2005, 25: 2875-2882
[46]  111 Wang W, Peng S, Fang J. Root respiration and its relation to nutrient contents in soil and root and EVI among 8 ecosystems, northern China. Plant Soil, 2010, 333: 391-401
[47]  112 Schlesinger W H. Carbon balance in terrestrial detritus. Annu Rev Ecol Evol Syst, 1977, 8: 51-81
[48]  113 Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B: 81-99
[49]  114 Maier C A, Kress L W. Soil CO2 evolution and root respiration in 11 year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J Forest Res, 2000, 30: 347-359
[50]  116 Mikutta R, Kleber M, Kaiser K, et al. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate. Soil Sci Soc Am J, 2005, 69: 120-135
[51]  117 Amelung W, Brodowski S, Sandhage-Hofmann A, et al. Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv Agron, 2008, 100: 155-250
[52]  2 Lal R. Carbon sequestration. Phil Trans R Soc B, 2008, 363: 815-830
[53]  3 Wilson B R, Growns I, Lemon J. Land-use effects on soil properties on the north-western slopes of New South Wales: Implications for soil condition assessment. Aust J Soil Res, 2008, 46: 359-367
[54]  8 Lal R. Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosys, 2004, 70: 103-116
[55]  9 Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627
[56]  13 Buscardo E, Smith G F, Kelly D L, et al. The early effects of afforestation on biodiversity of grasslands in Ireland. Biodivers Conserv, 2008, 17: 1057-1072
[57]  14 Hu Y L, Zeng D H, Fan Z P, et al. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the south-eastern Keerqin Sandy Lands, China. J Arid Environ, 2008, 72: 2193-2200
[58]  15 Menyailo O V. The effect of afforestation on mineralization of soil organic matter. Russ J Ecol, 2008, 39: 21-25
[59]  16 Berthrong S T, Schadt C W, Pi?eiro G, et al. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands. Appl Environ Microb, 2009, 75: 6240-6248
[60]  17 Guo L B, Gifford R M. Soil carbon stocks and land use change: A meta analysis. Glob Change Biol, 2002, 8: 345-360
[61]  21 Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. Forest Ecol Manag, 2003, 180: 317-333
[62]  22 Mendham D S, O'Connell A M, Grove T S. Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south-western Australia. Agr Ecosyst Environ, 2003, 95: 143-156
[63]  23 Jackson R B, Banner J L, Jobbágy E G, et al. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 2002, 418: 623-626
[64]  24 Davis M R, Condron L M. Impact of grassland afforestation on soil carbon in New Zealand: A review of paired-site studies. Aust J Soil Res, 2002, 40: 675-690
[65]  25 Hagedorn F, Spinnler D, Bundt M, et al. The input and fate of new C in two forest soils under elevated CO2. Glob Change Biol, 2003, 9: 862-872
[66]  26 Trumbore S E. Radiocarbon and soil carbon dynamics. Annu Rev Earth Planet Sci, 2009, 37: 47-66
[67]  28 Quideau S A, Anderson M A, Graham R C, et al. Soil organic matter processes: Characterization by 13C NMR and 14C measurements. Forest Ecol Manag, 2000, 138: 19-27
[68]  29 Libby W F. Atmospheric helium three and radiocarbon from cosmic radiation. Phys Rev, 1947, 69: 671-672
[69]  32 Trumbore S E. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol Appl, 2000, 10: 399-411
[70]  34 Trumbore S E, Vogel J S, Southon J R. AMS C-14 measurements of fractionated soil organic-matter—An approach to deciphering the soil carbon-cycle. Radiocarbon, 1989, 31: 644-654
[71]  35 von Lützow M, K?gel-Knabner I, Ekschmitt K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem, 2007, 39: 2183-2207
[72]  36 Monreal C M, Schulten H R, Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol. Can J Soil Sci, 1997, 77: 379-388
[73]  37 Moni C, Rumpel C, Virto I, et al. Relative importance of sorption versus aggregation for organic storage in subsoil horizons of two contrasting soils. Eur J Soil Sci, 2010, 61: 958-969
[74]  39 Liu H, Xu L, Cui H. Holocene history of desertification along the woodland-steppe border in Northern China. Quat Res, 2002, 57: 259-270
[75]  40 黄金祥, 李信, 钱进源. 塞罕坝植物志. 北京: 中国科学技术出版社, 1996
[76]  41 Marzaioli F, Lubritto C, Galdo I D, et al. Comparison of different soil organic matter fractionation methodologies: Evidences from ultrasensitive 14C measurements. Nucl Instrum Meth B, 2010, 268: 1062-1066
[77]  42 Trumbore S E, Zheng S. Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon, 1996, 38: 219-229
[78]  43 Xu X M, Trumbore S E, Zheng S H, et al. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nucl Instrum Meth B, 2007, 259: 320-329
[79]  44 Liu K X, Ding X F, Fu D P, et al. A new compact AMS system at Peking University. Nucl Instrum Meth B, 2007, 259: 23-26
[80]  46 Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils. Radiocarbon, 1993, 35: 363-367
[81]  51 Besnard E, Chenu C, Balesdent J. Fate of particulate organic matter in soil aggregates during cultivation. Eur J Soil Sci, 1996, 47: 495-503
[82]  54 Feller C, Beare M H. Physical control of soil organic matter dynamics in the tropics. Geoderma, 1997, 79: 69-116
[83]  56 ?gren G I, Bosatta E, Balesdent J. Isotope discrimination during decomposition of organic matter: A theoretical analysis. Soil Sci Soc Am J, 1996, 60: 1121-1126
[84]  57 Feng X. A theoretical analysis of carbon isotope evolution of decomposing plant litters and soil organic matter. Glob Biogeochem Cycle, 2002, 16: 1119-1130
[85]  61 Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils. J Soil Sci, 1982, 33: 141-163
[86]  62 Oades J M. Soil organic matter and structural stability: Mechanisms and implications for management. Plant Soil, 1984, 76: 319-337
[87]  63 Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till Res, 2004, 79: 7-31
[88]  64 Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem, 2000, 32: 2099-2103
[89]  65 Bull I D, Parekh N R, Hall G H, et al. Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature, 2000, 405: 175-178
[90]  66 Nierop K G J, Naafs D F W, Verstraten J M. Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradient. Org Geochem, 2003, 34: 719-729
[91]  69 Mambelli S, Bird J A, Gleixner G, et al. Relative contribution of foliar and fine root pine litter to the molecular composition of soil organic matter after in situ degradation. Org Geochem, 2011, 42: 1099-1108
[92]  70 Crow S E, Lajtha K, Brant J, et al. Increased coniferous needle inputs accelerate decomposition of soil organic matter in an old-growth forest. Forest Ecol Manag, 2009, 258: 2224-2232
[93]  71 Raich J W, Nadelhoffer K J. Belowground carbon allocation in forest ecosystems: Global trends. Ecology, 1989, 70: 1346-1354
[94]  75 Zhang J, Zhao H, Zhang T, et al. Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. J Arid Environ, 2005, 62: 555-566
[95]  76 Zak D R, Holmes W E, White D C, et al. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 2003, 84: 2042-2050
[96]  77 Marschner B, Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 2003, 113: 211-235
[97]  78 Filep T, Rékási M. Factors controlling dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and DOC/DON ratio in arable soils based on a dataset from Hungary. Geoderma, 2011, 162: 312-318
[98]  81 Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci, 2000, 165: 277-304
[99]  83 李良, 翟洪波, 姚凯, 等. 不同林龄华北落叶松人工林枯落物储量及持水特性研究. 中国水土保持, 2010, 3: 32-35
[100]  85 Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 2007, 450: 277-281
[101]  86 Guenet B, Danger M, Abbadie L, et al. Priming effect: Bridging the gap between terrestrial and aquatic ecology. Ecology, 2010, 91: 2850-2861
[102]  89 Linn D M, Doran J W. Effects of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Sci Soc Am J, 1984, 48: 1267-1272
[103]  90 邵月红, 潘剑君, 孙波. 不同森林植被下土壤有机碳的分解特征及碳库研究. 水土保持学报, 2005, 19: 24-28
[104]  92 邵月红, 潘剑君, 孙波, 等. 农田土壤有机碳库大小及周转. 生态学杂志, 2006, 25: 19-23
[105]  93 尹云锋, 蔡祖聪. 不同类型土壤有机碳分解速率的比较. 应用生态学报, 2007, 18: 2251-2255
[106]  94 孟静娟, 史学军, 潘剑君, 等. 农业利用方式对土壤有机碳库大小及周转的影响研究. 水土保持学报, 2009, 23: 144-148
[107]  95 严毅萍, 曹建华, 杨慧, 等. 岩溶区不同土地利用方式对土壤有机碳碳库及周转时间的影响. 水土保持学报, 2012, 26: 144-149
[108]  101 周涛, 史培军, 贾根锁, 等. 中国森林生态系统碳周转时间的空间格局. 中国科学: 地球科学, 2010, 40: 632-644
[109]  102 李凌浩, 刘先华, 陈佐忠. 内蒙古锡林河流域羊草草原生态系统碳素循环研究. 植物学报, 1998, 40: 955-961
[110]  104 常宗强, 冯起, 司建华, 等. 祁连山不同植被类型土壤碳贮量和碳通量. 生态学杂志, 2008, 27: 681-688
[111]  105 McDowell W H, Zsolnay A, Aitkenhead-Peterson J A, et al. A comparison of methods to determine the biodegradable dissolved organic matter (DOM) from different terrestrial sources. Soil Biol Biochem, 2006, 38: 1933-1942
[112]  106 Wang G, Feng X, Han J, et al. Paleovegetation reconstruction using δ13C of soil organic matter. Biogeosciences, 2008, 5: 1325-1337
[113]  107 董云社, 齐玉春, 刘纪远, 等. 不同降水强度4种草地群落土壤呼吸通量变化特征. 科学通报, 2005, 50: 473-480
[114]  108 Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem, 2006, 38: 425-448
[115]  109 Scott N A, Tate K R, Ford-Robertson J, et al. Soil carbon storage in plantation forests and pastures: Land-use change implications. Tellus, 1999, 51B: 326-335
[116]  110 Tate K R, Scott N A, Saggar S, et al. Land-use change alters New Zealand's terrestrial carbon budget: Uncertainties associated with estimates of soil carbon change between 1999-2000. Tellus, 2003, 55B: 364-377
[117]  115 汪涛. 河北塞罕坝不同生态系统土壤呼吸及其与温度的关系. 硕士学位论文. 北京: 北京大学, 2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133