1 Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon Not R Astron Soc, 1977, 181: 375-389
[2]
3 Monaghan J J. Simulating free surface flows with SPH. J Comput Phys, 1994, 110: 399-406
[3]
4 Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour, 2003, 26: 787-800
[4]
7 Xu X, Ouyang J, Jiang T, et al. Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method. J Non-Newton Fluid Mech, 2012, 177-178: 109-120
[5]
11 Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Engrg, 2009, 198: 2785-2795
[6]
12 Li S, Liu W K. Meshfree and particle methods and their applications. Appl Mech Rev, 2002, 55: 1-34
[7]
13 Belytschko T, Krongauz Y, Dolbow J, et al. On the completeness of meshfree particle methods. Int J Numer Methods Eng, 1998, 43: 785-819
[8]
14 Liu M B, Liu G R. Restoring particle consistency in smoothed particle hydrodynamics. Appl Num Math, 2006, 56: 19-36
[9]
16 Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int J Numer Methods Fluids, 1995, 20: 1081-1106
[10]
17 Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conductions. Int J Numer Methods Eng, 1999, 46: 231-252
[11]
18 Liu M B, Xie W P, Liu G R. Modeling incompressible flows using a finite particle method. Appl Math Model, 2005, 29: 1252-1270
[12]
23 Posch H A, Hoover W G, Kum O. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Phys Rev E, 1995, 52: 1711-1720
[13]
29 Zhou G, Chen Z, Ge W, et al. SPH simulation of oil displacement in cavity-fracture structures. Chem Eng Sci, 2010, 65: 3363-3371
[14]
31 Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH. J Comput Phys, 1997, 136: 214-226
[15]
32 Sigalotti L D G, Klapp J, Sira E, et al. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J Comput Phys, 2003, 191: 622-638
[16]
33 Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys, 2003, 191: 448-475
[17]
34 Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys, 2006, 213: 844-861
[18]
35 Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newton Fluid Mech, 2005, 132: 61-72
[19]
36 Zhu H, Martys N S, Ferraris C, et al. A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method. J Non-Newton Fluid Mech, 2010, 165: 362-375
[20]
37 Zhu H, Zhou Z, Yang R, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007, 62: 3378-3396
[21]
38 Sun Q, Wang G, Hu K. Some open problems in granular matter mechanics. Prog Nat Sci, 2009, 19: 523-529
[22]
39 Grmela M, ?ttinger H C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E, 1997, 56: 6620-6632
[23]
2 Lucy L B. A numerical approach to the testing of the fission hypothesis. Astron J, 1977, 82: 1013-1024
[24]
5 Zhou G, Ge W, Li B, et al. SPH simulation of selective withdrawal from microcavity. Microfluid Nanofluid, 2013, doi: 10.1007/s10404- 013-1165-1
[25]
6 Zhang M. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J Comput Phys, 2010, 229: 7238-7259
[26]
8 Xu X, Ouyang J, Yang B, et al. SPH simulations of three-dimensional non-Newtonian free surface flows. Comput Methods Appl Mech Engrg, 2013, 256: 101-116
[27]
9 Shao S. Incompressible SPH simulation of wave breaking and overtopping with turbulence modeling. Int J Numer Methods Fluids, 2006, 50: 591-621
[28]
10 Violeau D, Issa R. Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview. Int J Numer Methods Fluids, 2007, 53: 277-304
[29]
15 Koumoutsakos P. Multiscale flow simulations using particles. Annu Rev Fluid Mech, 2005, 37: 457-487
[30]
19 Jiang T, Ouyang J, Ren J, et al. A mixed corrected symmetric SPH (MC-SSPH) method for computational dynamic problems. Comp Phys Comm, 2012, 183: 50-62
[31]
20 Dilts G A. Moving-least-squares-particle hydrodynamics—I. Consistency and stability. Int J Numer Methods Eng, 1999, 44: 1115-1155
[32]
21 Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smooth particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys, 2002, 182: 67-90
24 Hoover W G, Hess S. Equilibrium and nonequilibrium thermomechanics for an effective pair poterntial used in smooth particle applied mechanics. Physica A, 1996, 231: 425-438
[35]
25 Espa?ol P, Revenga M. Smoothed dissipative particle dynamics. Phys Rev E, 2003, 67: 026705
[36]
26 Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E, 2005, 72: 026301
[37]
27 Tartakovsky A M, Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour, 2006, 29: 1464-1478
[38]
28 Zhou G, Ge W, Li J. A revised surface tension model for macro-scale particle methods. Powder Technol, 2008, 183: 21-26
[39]
30 Zhou G, Ge W, Li J. Smoothed particles as a non-Newtonian fluid: A case study in Couette flow. Chem Eng Sci, 2010, 65: 2258-2262
[40]
40 Hoover W G, Pierce T G, Hoover C G, et al. Molecular dynamics, smoothed-particle applied mechanics, and irreversibility. Comput Math Appl, 1994, 28: 155-174