全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

传统光滑粒子动力学方法的适用性分析

, PP. 1414-1421

Keywords: 光滑粒子动力学,流体力学,精度,Couette流,粒子方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

光滑粒子动力学(smoothedparticlehydrodynamics,SPH)是一种典型的无网格拉格朗日型数值方法,但它存在计算精度相对较低的缺陷.为调查精度问题的物理本质,将SPH粒子类比于实体物理颗粒,分析了SPH粒子的弹性效应,并提出了一个表征黏弹效应比的无量纲数.通过二维Couette流模拟,考察了该无量纲数对粒子速度剖面与排布方式的影响.研究结果表明,系统的有效黏度随该无量纲数的增大而减小,且粒子数的增加只能显著降低较小无量纲数下的有效黏度.名义黏性耗散、总耗散以及理论耗散之间的差异,进一步验证了弹性效应所导致的非物理耗散.总之,由于马赫数与该无量纲数的限制,SPH模拟存在一个临界雷诺数,只有低于这个临界数,才能基于合适的模型参数实现牛顿流体的精确模拟.

References

[1]  1 Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon Not R Astron Soc, 1977, 181: 375-389
[2]  3 Monaghan J J. Simulating free surface flows with SPH. J Comput Phys, 1994, 110: 399-406
[3]  4 Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour, 2003, 26: 787-800
[4]  7 Xu X, Ouyang J, Jiang T, et al. Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method. J Non-Newton Fluid Mech, 2012, 177-178: 109-120
[5]  11 Rafiee A, Thiagarajan K P. An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Engrg, 2009, 198: 2785-2795
[6]  12 Li S, Liu W K. Meshfree and particle methods and their applications. Appl Mech Rev, 2002, 55: 1-34
[7]  13 Belytschko T, Krongauz Y, Dolbow J, et al. On the completeness of meshfree particle methods. Int J Numer Methods Eng, 1998, 43: 785-819
[8]  14 Liu M B, Liu G R. Restoring particle consistency in smoothed particle hydrodynamics. Appl Num Math, 2006, 56: 19-36
[9]  16 Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. Int J Numer Methods Fluids, 1995, 20: 1081-1106
[10]  17 Chen J K, Beraun J E, Carney T C. A corrective smoothed particle method for boundary value problems in heat conductions. Int J Numer Methods Eng, 1999, 46: 231-252
[11]  18 Liu M B, Xie W P, Liu G R. Modeling incompressible flows using a finite particle method. Appl Math Model, 2005, 29: 1252-1270
[12]  23 Posch H A, Hoover W G, Kum O. Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics. Phys Rev E, 1995, 52: 1711-1720
[13]  29 Zhou G, Chen Z, Ge W, et al. SPH simulation of oil displacement in cavity-fracture structures. Chem Eng Sci, 2010, 65: 3363-3371
[14]  31 Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH. J Comput Phys, 1997, 136: 214-226
[15]  32 Sigalotti L D G, Klapp J, Sira E, et al. SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J Comput Phys, 2003, 191: 622-638
[16]  33 Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys, 2003, 191: 448-475
[17]  34 Hu X Y, Adams N A. A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys, 2006, 213: 844-861
[18]  35 Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number. J Non-Newton Fluid Mech, 2005, 132: 61-72
[19]  36 Zhu H, Martys N S, Ferraris C, et al. A numerical study of the flow of Bingham-like fluids in two-dimensional vane and cylinder rheometers using a smoothed particle hydrodynamics (SPH) based method. J Non-Newton Fluid Mech, 2010, 165: 362-375
[20]  37 Zhu H, Zhou Z, Yang R, et al. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci, 2007, 62: 3378-3396
[21]  38 Sun Q, Wang G, Hu K. Some open problems in granular matter mechanics. Prog Nat Sci, 2009, 19: 523-529
[22]  39 Grmela M, ?ttinger H C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys Rev E, 1997, 56: 6620-6632
[23]  2 Lucy L B. A numerical approach to the testing of the fission hypothesis. Astron J, 1977, 82: 1013-1024
[24]  5 Zhou G, Ge W, Li B, et al. SPH simulation of selective withdrawal from microcavity. Microfluid Nanofluid, 2013, doi: 10.1007/s10404- 013-1165-1
[25]  6 Zhang M. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J Comput Phys, 2010, 229: 7238-7259
[26]  8 Xu X, Ouyang J, Yang B, et al. SPH simulations of three-dimensional non-Newtonian free surface flows. Comput Methods Appl Mech Engrg, 2013, 256: 101-116
[27]  9 Shao S. Incompressible SPH simulation of wave breaking and overtopping with turbulence modeling. Int J Numer Methods Fluids, 2006, 50: 591-621
[28]  10 Violeau D, Issa R. Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview. Int J Numer Methods Fluids, 2007, 53: 277-304
[29]  15 Koumoutsakos P. Multiscale flow simulations using particles. Annu Rev Fluid Mech, 2005, 37: 457-487
[30]  19 Jiang T, Ouyang J, Ren J, et al. A mixed corrected symmetric SPH (MC-SSPH) method for computational dynamic problems. Comp Phys Comm, 2012, 183: 50-62
[31]  20 Dilts G A. Moving-least-squares-particle hydrodynamics—I. Consistency and stability. Int J Numer Methods Eng, 1999, 44: 1115-1155
[32]  21 Chaniotis A K, Poulikakos D, Koumoutsakos P. Remeshed smooth particle hydrodynamics for the simulation of viscous and heat conducting flows. J Comput Phys, 2002, 182: 67-90
[33]  22 Monaghan J J. Smoothed particle hydrodynamics. Rep Prog Phys, 2005, 68: 1703-1759
[34]  24 Hoover W G, Hess S. Equilibrium and nonequilibrium thermomechanics for an effective pair poterntial used in smooth particle applied mechanics. Physica A, 1996, 231: 425-438
[35]  25 Espa?ol P, Revenga M. Smoothed dissipative particle dynamics. Phys Rev E, 2003, 67: 026705
[36]  26 Tartakovsky A, Meakin P. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E, 2005, 72: 026301
[37]  27 Tartakovsky A M, Meakin P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour, 2006, 29: 1464-1478
[38]  28 Zhou G, Ge W, Li J. A revised surface tension model for macro-scale particle methods. Powder Technol, 2008, 183: 21-26
[39]  30 Zhou G, Ge W, Li J. Smoothed particles as a non-Newtonian fluid: A case study in Couette flow. Chem Eng Sci, 2010, 65: 2258-2262
[40]  40 Hoover W G, Pierce T G, Hoover C G, et al. Molecular dynamics, smoothed-particle applied mechanics, and irreversibility. Comput Math Appl, 1994, 28: 155-174

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133