全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

太阳风动压脉冲条件下电离层与等离子体层的物质输运

, PP. 1748-1754

Keywords: 太阳风动压,电离层,等离子体层,行星际南向磁场,晨昏电场

Full-Text   Cite this paper   Add to My Lib

Abstract:

行星际条件如何影响等离子体层和电离层之间的物质传输至今还是一个悬而未决的问题.我国刚建成的子午工程可以对等离子体层和电离层开展同时监测,为了解这两个区域之间等离子体的传输特性和耦合机制提供了新的机遇.我们分析了2011年3月21~27日地磁平静期间等离子体层(L≈2)与电离层物质输运对太阳风脉冲的响应,发现地磁平静时期等离子体层在太阳风动压脉冲作用下出现削减.在太阳风动压脉冲作用下,等离子体层密度减少至动压脉冲前的一半,而后经过1~2d逐渐恢复至初始水平;同时,电离层F2层最大电子密度(NmF2)和电离层总电子密度含量(TEC)增加13%和21%,而后恢复至初始值,这与磁暴期间的表现是相反的.初步的分析表明在该事件中,太阳风动压脉冲之后的行星际南向磁场和变化较大的晨昏电场可能是导致等离子体层密度减少的主要原因,变化的行星际条件和电离层共同控制着等离子体层的密度变化.

References

[1]  2 Chi P J, Russell C T, Musman S, et al. Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2. Geophys Res Lett, 2000, 27: 633-636
[2]  3 Chi P J, Russell C T, Foster J C, et al. Density enhancement in plasmasphere-ionosphere plasma during the 2003 Halloween Superstorm: Observations along the 330th magnetic meridian in North America. Geophys Res Lett, 2005, 32: L03S07
[3]  4 Wang C, Zhang Q M, Chi P J, et al. Simultaneous observations of plasmaspheric and ionospheric variations during magnetic storms in 2011: First result from Chinese Meridian Project. J Geophys Res, 2013, 118: 1-6
[4]  6 Spasojevic M, Sandel B R. Global estimates of plasmaspheric losses during moderate disturbance intervals. Ann Geophys, 2010, 28: 27-36
[5]  7 郭建广, 史建魁, Zhang T L, 等. 极尖区电离层离子与地磁活动及太阳风的相关分析. 科学通报, 2007, 52: 339-343
[6]  9 Waters C L, Menk F W, Fraser B J. The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys Res Lett, 1991, 18: 2293-2296
[7]  10 Kawano H, Yumoto K, Pilipenko V A, et al. Using two ground stations to identify magnetospheric field line eigenfrequency as a continuous function of ground latitude. J Geophys Res, 2002, 107: 251-262
[8]  12 Berube D, Moldwin M B, Fung S F, et al. A plasmaspheric mass density model and constraints on its heavy ion concentration. J Geophys Res, 2005, 110: A04212
[9]  13 Schulz M. Eigenfrequencies of geomagnetic field lines and implications for plasma-density modeling. J Geophys Res, 1996, 101: 17385-17397
[10]  14 Vellante M, F?rster M. Inference of the magnetospheric plasma mass density from field line resonances: A test using a plasmasphere model. J Geophys Res, 2006, 111: A11204
[11]  1 Carpenter D L. Electron-density variations in the Magnetosphere deduced from whistler data. J Geophys Res, 1962, 67: 3345-3360
[12]  5 Wang C. New chains of space weather monitoring stations in China. Space Weather, 2010, 8: S08001
[13]  8 Baransky L N, Borovkov J E, Gokhberg M B, et al. High resolution method of direct measurement of the magnetic field lines' eigen-frequencies. Planet Space Sci, 1985, 33: 1369-1374
[14]  11 Waters C L, Menk F W, Fraser B J. Low latitude geomagnetic field line resonance: Experiment and modeling. J Geophys Res, 1994, 99: 17547-17558
[15]  15 Villante U, Vellante M, Francial P, et al. ULF fluctuations of the geomagnetic field and ionospheric sounding measurements at low latitudes during the first CAWSES campaign. Ann Geophys, 2006, 24: 1455-1468
[16]  16 Carpenter D L. An ISEE whistler model of equatorial electron density in the magnetosphere. J Geophys Res, 1992, 97: 1097-1108

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133