全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

AFM单细胞单分子形貌成像的研究进展

, PP. 1711-1718

Keywords: 原子力显微镜,单细胞单分子,膜蛋白,形貌,高分辨率成像

Full-Text   Cite this paper   Add to My Lib

Abstract:

原子力显微镜(AFM)的出现为研究单个活细胞和单个天然态膜蛋白的生理活动行为提供了新的工具,它可以在溶液环境下对自然状态的生物样本进行高分辨率免标记探测,是对光学(荧光)显微镜、电子显微镜、X-射线结晶等传统生化实验技术的有力补充,已成为细胞生物学和分子生物学的重要研究手段.对生物样本的表面形貌进行成像是AFM在生物学领域的基本应用.自20世纪90年代初期以来,各国研究人员利用AFM对活细胞和天然膜蛋白的形态特征进行了大量创新性的研究,给生命科学带来了大量前所未有的新成就,同时AFM的性能也在不断得到改进和提高,极大地拓展了其在生物学领域的应用.本文结合作者在AFM活细胞形貌成像方面的研究工作,介绍了AFM单细胞单分子成像实验中的样本制备技术,总结了近年来AFM用于活细胞和天然态膜蛋白形貌成像取得的进展,讨论了AFM单细胞单分子高分辨率成像面临的挑战.

References

[1]  3 Hinterdorfer P, Garcia-Parajo M F, Dufrene Y F. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc Chem Res, 2012, 45: 327-336
[2]  5 Kodera N, Yamamoto D, Ishikawa R, et al. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature, 2010, 468: 72-76
[3]  6 Robertson J W F, Kasianowicz J J, Banerjee S. Analytical approaches for studying transporters, channels and porins. Chem Rev, 2012, 112: 6227-6249
[4]  7 Muller D J, Dufrene Y F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol, 2008, 3, 261-269
[5]  9 Matzke R, Jacobson K, Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol, 2001, 3: 607-610
[6]  10 Puntheeranurak T, Wildling L, Gruber H J, et al. Ligands on the string: Single-molecule AFM studies on the interaction of antibodies and substrates with the Na+-glucose co-transporter SGLT 1 in living cells. J Cell Sci, 2006, 119: 2960-2967
[7]  12 Rosenbluth M J, Lam W A, Fletcher D A. Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophys J, 2006, 90: 2994-3003
[8]  16 Fotiadis D. Atomic force microscopy for the study of membrane proteins. Curr Opin Biotechnol, 2012, 23: 510-515
[9]  19 Muller D J, Hand G M, Engel A, et al. Conformational changes in surface structures of isolated connex in 26 gap junctions. EMBO J, 2002, 14: 3598-3607
[10]  20 Radmacher M, Tillmann R W, Fritz M, et al. From molecules to cells: Imaging soft samples with the atomic force microscope. Science, 1992, 257: 1900-1905
[11]  21 Henderson E, Haydon P G, Sakaguchi D S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science, 1992, 257, 1944-1946
[12]  23 陈佩佩, 董宏涛, 陈龙, 等. 原子力显微术用于活细胞及新鲜组织成像的新进展. 科学通报, 2009, 54: 2027-2032
[13]  25 Fantner G E, Barbero R J, Gray D S, et al. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol, 2010, 5: 280-285
[14]  26 Kirmse R, Otto H, Ludwig T. Interdependency of cell adhesion, force generation and extracellular proteolysis in matrix remodeling. J Cell Sci, 2011, 124: 1857-1866
[15]  27 El-Kirt-Chatel S, Dufrene Y F. Nanoscale imaging of the candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano, 2012, 6: 10792-10799
[16]  28 Baker M. Making membrane proteins for structures a trillion tiny tweaks. Nat Methods, 2010, 7: 429-433
[17]  29 Bill R M, Henderson P J F, Iwata S, et al. Overcoming barriers to membrane protein structure determination. Nat Biotechnol, 2011, 29: 335-340
[18]  30 Zhang X, Ren W, Decaen P, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature, 2012, 486: 130-134
[19]  31 Ma D, Lu P, Yan C, et al. Structure and mechanism of a glutamate-GABA antiporter. Nature, 2012, 483: 632-636
[20]  32 Muller D J, Schabert F A, Buldt G, et al. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J, 1995, 68: 1681-1686
[21]  33 Fotiadis D, Liang Y, Filipek S, et al. Rhodopsin dimers in native disc membranes. Nature, 2003, 421: 127-128
[22]  34 Shibata M, Yamashita H, Uchihashi T, et al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol, 2010, 5: 208-212
[23]  35 Casuso I, Sens P, Rico F, et al. Experimental evidence for membrane-mediated protein-protein interaction. Biophys J, 2010, 99: L47-L49
[24]  37 李密, 刘连庆, 席宁, 等. 基于AFM单分子力谱技术的CD20-Rituximab间相互作用力测量. 科学通报, 2011, 56: 2681-2688
[25]  38 李密, 刘连庆, 席宁, 等. 基于AFM的淋巴瘤细胞成像及其机械特性测定. 科学通报, 2010, 55: 2188-2196
[26]  39 Li M, Xiao X, Liu L, et al. Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy. Scanning, 2013, 35: 40-46
[27]  1 Binnig G, Quate C F, Gerber C. Atomic force microscope. Phys Rev Lett, 1986, 56: 930-933
[28]  2 Katan A J, Dekker C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell, 2011, 147: 979-982
[29]  4 Muscariello L, Rosso F, Marino G, et al. A critical overview of ESEM applications in the biological field. J Cell Physiol, 2005, 205: 328-334
[30]  8 Kirat K E, Burton I, Dupres V, et al. Sample preparation procedures for biological atomic force microscopy. J Microsc, 2005, 218: 199-207
[31]  11 Dufrene Y F. Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc, 2008, 3: 1132-1138
[32]  13 Li M, Liu L, Xi N, et al. Imaging and measuring the rituximab-induced changes of mechanical properties in B-lymphoma cells using atomic force microscopy. Biochem Biophys Res Commun, 2011, 404: 689-694
[33]  14 Li M, Liu L, Xi N, et al. Drug-induced changes of topography and elasticity in living B lymphoma cells based on atomic force microscopy. Acta Phys Chim Sin, 2012, 28: 1502-1508
[34]  15 Mari S A, Pessoa J, Altieri S, et al. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc Natl Acad Sci USA, 2011, 108: 20802-20807
[35]  17 Muller D J, Engel A. Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc, 2007, 2: 2191-2197
[36]  18 Muller D J. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol, 1997, 119: 172-188
[37]  22 Vie V, Giocondi M C, Lesniewska E, et al. Tapping-mode atomic force microscopy on intact cells: Optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy, 2000, 82: 279-288
[38]  24 Alsteens D, Dupres V, Yunus S, et al. High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy. Langmuir, 2012, 28: 16738-16744
[39]  36 李密, 刘连庆, 席宁, 等. 基于AFM的红细胞及不同侵袭程度癌细胞的成像及机械特性测量. 中国科学: 生命科学, 2012, 42: 919-925
[40]  40 Li M, Liu L Q, Xi N, et al. Mapping CD20 molecules on the lymphoma cell surface using atomic force microscopy. Chin Sci Bull, 2013, 58: 1516-1519
[41]  41 Muller D J, Dufrene Y F. Force nanoscopy of living cells. Curr Biol, 2011, 21: R212-R216
[42]  42 Gross L, Mohn F, Moll N, et al. The chemical structure of a molecule resolved by atomic force microscopy. Science, 2009, 325: 1110-1114
[43]  43 Casuso I, Rico F, Sheuring S. High-speed atomic force microscopy: Structure and dynamics of single proteins. Curr Opin Chem Biol, 2011, 15: 704-709
[44]  44 Heinisch J J, Lipke P N, Beaussart A, et al. Atomic force microscopy-looking at mechanosensors on the cell surface. J Cell Sci, 2012, 125: 4189-4195
[45]  45 Dufrene Y F, Evans E, Engel A, et al. Five challenges to bringing single-molecule force spectroscopy into live cells. Nat Methods, 2011, 8: 123-127
[46]  46 Zhang P C, Keleshian A M, Sachs F. Voltage-induced membrane movement. Nature, 2001, 413: 428-432
[47]  47 Shekhawat G S, Dravid V P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science, 2005, 310: 89-92

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133