全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

基于叶片气孔导度提升的冬小麦冠层阻抗估算模型的应用和对比

, PP. 1775-1783

Keywords: 模型,辐射,叶片气孔导度,冠层阻抗,尺度提升,冬小麦

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了筛选适合华北典型地区冠层阻抗基于叶片气孔导度的提升方法,依据两个生长季的冬小麦田间试验资料,以Leuning-Ball和Jarvis叶片气孔导度模型为基础,构建了冠层阻抗估算模型,对比了不同冠层阻抗估算模型的应用效果.结果表明冬小麦叶片气孔阻抗日变化整体高于冠层阻抗,两者具有显著的尺度差异性;Leuning-Ball气孔导度模型能够更好地解释气孔导度对环境因子的响应;以光合有效辐射作为尺度转换因子,基于Leuning-Ball气孔导度模型提升的冠层阻抗估算模型能够有效地模拟冠层阻抗,可应用于华北典型地区冬小麦水汽传输阻抗尺度提升研究.

References

[1]  1 Rana G, Katerji N, Mastrorilli M, et al. Validation of a model of actual evapotranspiration for water stressed soybeans. Agr Forest Meteorol, 1997, 86: 215-224
[2]  8 Anadranistakis M, Liakatas A, Kerkides P, et al. Crop water requirements model tested for crops grown in Greece. Agr Water Manage, 2000, 45: 297-316
[3]  11 Yu G R, Nakayama K, Matsuoka N, et al. A combination model for estimating stomatal conductance of maize (Zea mays L.) Leaves over a long term. Agr Forest Meteorol, 1998, 92: 9-28
[4]  12 Beven K. A sensitivity analysis of the penman-monteith actual evapotranspiration estimates. J Hydrol, 1979, 44: 169-190
[5]  15 Raupach M R. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agr Forest Meteorol, 1995, 73: 151-179
[6]  17 Whitehead D, Okali D, Fasehun F E. Stomatal response to environmental variables in two tropical forest species during the dry season in Nigeria. J Appl Ecol, 1981, 18: 571-587
[7]  18 Zhang B Z, Kang S, Li F, et al. Comparison of three evapotranspiration models to bowen ratio-energy balance method for a vineyard in an arid desert region of northwest china. Agr Forest Meteorol, 2008, 148: 1629-1640
[8]  19 Zhou M C, Ishidaira H, Takeuchi K. Estimation of potential evapotranspiration over the yellow river basin: Reference crop evaporation or shuttleworth-wallace? Hydrol Process, 2007, 21: 1860-1874
[9]  20 Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ, 1995, 18: 339-355
[10]  21 于强, 王天铎. 光合作用-蒸腾作用-气孔导度的耦合模型及C3植物叶片对环境因子的生理响应. 植物学报, 1998, 40: 740-754
[11]  22 Sellers P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SIB2) for atmospheric gcms. Part I: Model formulation. J Clim, 1996, 9: 676-705
[12]  23 Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteor Soc, 1980, 106: 85-100
[13]  24 刘国水. 作物蒸散量测定与计算方法研究. 硕士学位论文. 保定: 河北农业大学, 2008
[14]  26 Yu G R, Zhuang J, Yu Z L. An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. J Plant Physiol, 2001, 158: 861-874
[15]  27 Yu G R, Nakayama K, Lu H Q. Modeling stomatal conductance in maize leaves with environmental variables. J Agr Meteorol, 1996, 52: 321-330
[16]  28 张宝忠, 刘钰, 许迪, 等. 基于夏玉米叶片气孔导度提升的冠层导度估算模型. 农业工程学报, 2011, 27: 80-86
[17]  29 Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in oryza sativa. Photosynthetica, 2007, 45: 637-640
[18]  31 Warland J S, Furon A C, Wagner-Riddle C. Analysis of scaling-up resistances from leaf to canopy using numerical simulations. Agron J, 2007, 99: 1483-1491
[19]  33 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006
[20]  36 许迪. 灌溉水文学尺度转换问题研究综述. 水利学报, 2006, 37: 141-149
[21]  37 Yu G R, Nakayama K, Matsuoka N, et al. A combination model for estimating stomatal conductance of maize (Zea mays L.) Leaves over a long term. Agr Forest Meteorol, 1998, 92: 9-28
[22]  39 Zhang B Z, Liu Y, Xu D, et al. Evapotranspiraton estimation based on scaling up from leaf stomatal conductance to canopy conductance. Agr Forest Meteorol, 2011, 151: 1086-1095
[23]  40 Rochette P, Pattey E, Desjardins R L, et al. Estimation of maize (Zea mays L.) Canopy conductance by scaling up leaf stomatal conductance. Agr Forest Meteorol, 1991, 54: 241-261
[24]  2 Shuttleworth W J, Wallace J S. Evaporation from sparse crops—An energy combination theory. Q J Roy Meteor Soc, 1985, 111: 839-855
[25]  3 Brenner A J, Incoll L D. The effect of clumping and stomatal response on evaporation from sparsely vegetated shrublands. Agr Forest Meteorol, 1997, 84: 187-205
[26]  4 Shuttleworth W J. Towards one-step estimation of crop water requirements. T Asabe, 2006, 49: 925-935
[27]  5 Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density. Agr Forest Meteorol, 2008, 148: 1034-1044
[28]  6 Kato T, Kimura R, Kamichika M. Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model. Agr Water Manage, 2004, 65: 173-191
[29]  7 Rana G, Katerji N. Measurement and estimation of actual evapotranspiration in the field under mediterranean climate: A review. Eur J Agron, 2000, 13: 125-153
[30]  9 Furon A, Warland J S, Wagner-Riddle C. Analysis of scaling-up resistances from leaf to canopy using numerical simulations. Agron J, 2007, 99: 1483-1491
[31]  10 Avissar R, Pielke R A. The impact of plant stomatal control on mesoscale atmospheric circulations. Agr Forest Meteorol, 1991, 54: 353-372
[32]  13 Black T A. Estimation of Areal Evapotranspiration. Budapest: IAHS Press, 1989
[33]  14 Oltchev A, Ibrom A, Constantin J, et al. Stomatal and surface conductance of a spruce forest: Model simulation and field measurements. Phys Chem Earth, 1998, 23: 453-458
[34]  16 申双和, 孙照渤, 陈镜明, 等. 北方黑云杉冠内空气CO2浓度及其上方通量模拟. 气象学报, 2005, 63: 6-17
[35]  25 郭家选, 梅旭荣, 卢志光, 等. 测定农田蒸散的涡度相关技术. 中国农业科学, 2004, 37: 1172-1176
[36]  30 Meidner H, Mansfield T A. Physiology of Stomata. Maidenhead: McGraw Hill, 1968
[37]  32 Kaufmann M R. Leaf conductance as a function of photosynthetic photon flux density and absolute humidity difference from leaf to air. Plant Physiol, 1982, 69: 1018-1022
[38]  34 Mccuen R H, Knight Z, Cutter A G. Evaluation of the nash-sutcliffe efficiency index. J Hydrol Eng, 2006, 11: 597-602
[39]  35 徐惠风, 刘兴土, 沙箓, 等. 遮荫条件下乌拉苔草叶片气孔阻力与脯氨酸、叶绿素含量的研究. 农业系统科学与综合研究, 2004, 20: 232-234
[40]  38 Egea G, Verhoef A, Vidale P L. Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models. Agr Forest Meteorol, 2011, 151: 1370-1384

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133