全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2013 

扩散张量磁共振图像分割研究进展

DOI: 10.1360/972012-893, PP. 1719-1730

Keywords: 图像分割,扩散张量成像,聚类,图割,水平集,相似性测度

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着扩散张量成像(diffusiontensorimaging,DTI)在临床的广泛应用,扩散张量分割方法已成为国内外医学图像处理与分析领域的研究热点之一.本文对近年来提出的各种扩散张量图像分割方法进行了综述,重点分析了以聚类、图割和水平集为基础的扩散张量分割方法的研究现状及其最新进展,分别讨论了各类方法中代表性算法的主要计算思路,并定性地分析、比较了这些算法的分割对象、所采用的相似性测度以及优缺点.最后,归纳总结了现有方法的主要特点,同时对扩散张量图像分割方法的未来发展方向进行了展望.

References

[1]  1 Lenglet C, Rousson M, Deriche R. DTI segmentation by statistical surface evolution. IEEE Trans Med Imaging, 2006, 25: 685-700
[2]  2 Basser P, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysica, 1994, 66: 259-267
[3]  3 Haz-Edine A, David T, Luc B, et al. Recent advances in diffusion MRI modeling: Angular and radial reconstruction. Med Image Anal, 2011, 15: 369-396
[4]  4 LeBihan D, Mangin J, Poupon C, et al. Diffusion tensor imaging: Concepts and applications. J Magn Reson Imaging, 2001, 13: 534-546
[5]  5 Susumu M, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 2006, 51: 527-539
[6]  6 Wang Z Z, Vemuri B C. Tensor field segmentation using region based active contour model. In: Proceedings of European Conference on Computer Vision. Prague, Czech Republic, 2004. 304-315
[7]  7 Wang Z Z, Vemuri B C. An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proceedings of IEEE Computer Society Conference Computation Vision and Pattern Recognition. Washington D C, USA, 2004. 228-233
[8]  8 Wang Z Z, Vemuri B C. DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans Med Imaging, 2005, 24: 1267-1277
[9]  14 Awate S, Gee J. A fuzzy, nonparametric segmentation framework for DTI and MRI analysis. In: Proceedings of Information Processing in Medical Imaging. Kerkrade, The Netherlands, 2007. 296-307
[10]  16 Nazem-Zadeh M R, Davoodi-Bojd E, Soltanian-Zadeh H. Atlas-based fiber bundle segmentation using principal diffusion directions and spherical harmonic coefficients. NeuroImage, 2011, 54: s146-s164
[11]  20 Davoodi-Bojd E, Nazem-Zadeh M R, Soltanian-Zadeh H. Atlas based segmentation of white matter fiber bundles using ODF data in reduced position orientation space (RPOS). In: Proceedings of the 6th Annual World Congress for Brain Mapping and Image Guided Therapy (Annual Congress of the IBMISPS). Boston, USA, 2009. 26-29
[12]  21 Tournier J D, Calamante F, Gadian D G, et al. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 2004, 23: 1176-1185
[13]  22 Basser P, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data. Magn Reson Med, 2000, 44: 625-632
[14]  23 Parker G, Wheeler-Kingshott C, Barker G. Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging, 2002, 21: 505-512
[15]  24 Behrens T, Berg H J, Jbabdi S, et al. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage, 2007, 34: 144-155
[16]  25 吴占雄, 朱善安, 贺斌. 扩散张量成像中脑胼胝体结果图像的分割算法. 浙江大学学报(工学版), 2011, 45: 163-167
[17]  26 吴占雄, 陈潮, 高明煜, 等. 基于张量形态学梯度和图像森林化变换分水岭算法的扩散张量图像脑白质分割. 航天医学与医学工程, 2011, 24: 139-142
[18]  27 Wu X, Xie M Y, Zhou J L, et al. Globally optimized fiber tracking and hierarchical clustering—A unified framework. Magn Reson Imaging, 2012, 30: 485-495
[19]  28 Li L J, Ma N, Li Z X, et al. Prefrontal white matter abnormalities in young adult with major depressive disorder: A diffusion tensor imaging study. Brain Res, 2007, 1168: 124-128
[20]  29 Yu C S, Shu N, Li J, et al. Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography. NeuroImage, 2007, 36: 411-417
[21]  32 Shu N, Li J, Li K C, et al. Abnormal diffusion of cerebral white matter in early blindness. Human Brain Mapping, 2009, 30: 220-227
[22]  33 Zhang T, Guo L, Li K M, et al. Predicting functional brain ROIs via fiber shape models In: Proceedings of MICCAI. Toronto, Canada, 2011. 42-49
[23]  34 Wang Y, Gupta A, Liu Z X, et al. DTI registration in atlas based fiber analysis of infantile Krabbe disease. NeuroImage, 2011, 55: 1577-1586
[24]  35 Weickert J, Hagen H. Visualization and Processing of Tensor Fields. Berlin: Springer, 2006. 345-412
[25]  36 Johansen-Berg H, Behrens T. Diffusion MRI. London: Academic Press, 2009
[26]  37 Aja-Fernández S, Luis R D, Tao D C. Tensors in Image Processing and Computer Vision. London: Springer, 2009. 35-58
[27]  38 Laidlaw D, Weickert J. Visualization and Processing of Tensor Fields: Advances and Perspectives. Berlin: Springer, 2009. 113-138
[28]  39 Bougias C, Tripoliti E E. Theory of diffusion tensor imaging and fiber tractography analysis. Eur J Radiogr, 2009, 1: 37-41
[29]  40 Arsigny V, Fillard P, Pennec X, et al. Fast and simple calculus on tensors in the Log-Euclidean framework. In: Proceedings of MICCAI. California, USA, 2005. 115-122
[30]  42 Zhukov L, Museth K, Breen D, et al. Level set modeling and segmentation of DT-MRI brain data. J Electr Imaging, 2003, 12: 125-133
[31]  43 Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. Int J Comput Vis, 2006, 66: 41-66
[32]  44 Peeters T H J M, Rodrigues P R, Vilanova A, et al. Analysis of distance/similarity measures for diffusion tensor imaging. In: Visualization and Processing of Tensor Fields: Advances and Perspectives. Berlin: Springer, 2009. 113-136
[33]  45 Feddern C, Weickert J, Burgeth B. Level-set methods for tensor-valued images. In: Proceedings of IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision. Nice, France, 2003. 65-72
[34]  47 Duan Y, Li X, Xi Y. Thalamus segmentation from diffusion tensor magnetic resonance imaging. Int J Biomed Imaging, 2007, 2: 1-5
[35]  50 Boykov Y Y, Funka-Lea G. Graph cuts and efficient N-D Image segmentation. Int J Comput Vis, 2006, 70: 109-131
[36]  53 Rittner L, Lotufo R, Campbell J, et al. Segmentation of thalamic nuclei based on tensorial morphological gradient of diffusion tensor fields. In: Proceedings of IEEE International Symposium on Biomedical Imaging. Boston, USA, 2010. 1173-1176
[37]  54 Rittner L, Lotufo R. Diffusion tensor imaging segmentation by watershed transform on tensorial morphological gradient. In: Proceedings of the XXI Brazilian Symposium on Computer Graphics and Image Processing. Campo Grande, Brazil, 2008. 196-203
[38]  55 Rittner L, Appenzeller S, Lotufo R. Segmentation of brain structures by watershed transform on tensorial morphological gradient of diffusion tensor imaging. In: Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing. Rio de Janeiro, Brazil, 2009. 126-132
[39]  56 Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intel, 2000, 22: 888-905
[40]  59 Malcolm J, Rathi Y, Tannenbaum A. A graph cut approach to image segmentation on tensor space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA, 2007. 1-8
[41]  60 Han D, Singh V, Lee J E, et al. An experimental evaluation of diffusion tensor image segmentation using graph-cuts. In: Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC). Minnesota, USA, 2009. 5653-5656
[42]  61 Weldeselassie Y T, Hamarneh G. DT-MRI segmentation using graph cuts. In: Proceedings of SPIE. San Diego, USA, 2007. 65121K
[43]  62 Aubert G, Kormprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Beijing: World Publishing Corporation, 2009. 207-342
[44]  63 Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational-problems. Commun Pure Appl Math, 1989, 42: 577-685
[45]  9 Lenglet C, Rousson M, Deriche R, et al. A Riemannian approach to diffusion tensor images segmentation. In: Proceedings of Information Processing in Medical Imaging. Colorado, USA, 2005. 591-602
[46]  10 Lenglet C, Rousson M, Deriche R, et al. Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. J Math Imaging Vis, 2006, 25: 423-444
[47]  11 Lenglet C, Rousson M, Deriche R, et al. A statistical framework for DTI segmentation. In: Proceedings of 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Arlington, Virginia, USA, 2006. 794-797
[48]  12 Jonasson L, Bresson X, Hagmann P, et al. White matter fiber tract segmentation in DT-MRI using geometric flows. Med Image Anal, 2005, 9: 223-236
[49]  13 Jonasson L, Hagmann P, Pollo C, et al. A level set method for segmentation of the thalamus and its nuclei in DT-MRI. Signal Proc, 2007, 87: 309-321
[50]  15 Awate S, Zhang H, Gee J. A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: With applications to DTI-tract extraction. IEEE Trans Med Imaging, 2007, 26: 1525-1536
[51]  17 Li H, Zhong X, Guo L, et al. A hybrid approach to automatic clustering of white matter fibers. NeuroImage, 2010, 49: 1249-1258
[52]  18 Wassermann D, Bloy L, Kanterakis E, et al. Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers. NeuroImage, 2010, 51: 228-241
[53]  19 Eckstein I, Shattuck D W, Stein J L, et al. Active fibers: Matching deformable tract templates to diffusion tensor images. NeuroImage, 2009, 47: T82-T89
[54]  30 Jiang T Z, Liu Y, Shi F, et al. Multimodal magnetic resonance imaging for brain disorders: Advances and perspectives. Brain Imaging Behav, 2008, 2: 249-257
[55]  31 Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res, 2008, 100: 120-132
[56]  41 Arsigny V, Fillard P, Pennec X, et al. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med, 2006, 56: 411-421
[57]  46 Wiegell M R, Tuch D S, Larson H B W, et al. Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage, 2003, 19: 391-402
[58]  48 Guo W H, Chen Y M, Zeng Q G. A geometric flow-based approach for diffusion tensor image segmentation. Phil Trans Royal Soc A, 2008, 366: 2279-2291
[59]  49 Luis R D, Westin C F, Alberola C. Gaussian mixtures on tensor fields for segmentation: Applications to medical imaging. Comput Med Imaging Graph, 2011, 35: 16-30
[60]  51 Ziyan U, Tuch D, Westin C F. Segmentation of thalamic nuclei from DTI using spectral clustering. In: Proceedings of MICCAI. Copenhagen, Denmark, 2006. 807-814
[61]  52 Luis R D, Alberola C. Mixtures of gaussians on tensor fields for DT-MRI segmentation. In: Proceedings of MICCAI. Brisbane, Australia, 2007. 319-326
[62]  57 Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of International Conference on Computer Vision. Vancouver, Canada, 2001. 105-112
[63]  58 Boykov Y Y, Veksler O. Graph cuts in vision and graphics: Theories and applications. In: Handbook of Mathematical Models in Computer Vision. Berlin: Springer, 2006. 79-96
[64]  64 Angelos B, Vemuri B C, Shepherd T M, et al. Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans Med Imaging, 2007, 26: 1537-1546
[65]  65 Marroquín J L, Velasco F A, Rivera M, et al. Gauss-Markov measure field models for low-level vision. IEEE Trans Pattern Anal Mach Intel, 2001, 23: 337-348
[66]  66 Zimmerman-Moreno G, Mayer A, Greenspan H. Classification trees for fast segmentation of DTI brain fiber tracts. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Alaska, USA, 2008. 1-7
[67]  67 Davoodi-Bojd E, Soltanian-Zadeh H. Atlas based segmentation of white matter fiber bundles in DTMRI using fractional anisotropy and principal eigen vectors. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Paris, France, 2008. 879-882
[68]  68 Hasan K M, Walimuni I S, Abid H, et al. A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput Biol Med, 2011, 41: 1062-1072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133