2 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China Caton. Nature, 2004, 432: 892-897
[2]
3 Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobes and loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Publ, 1993, 76: 71-81
[3]
4 Zhang H F, Goldstern S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 2008, 155: 271-293
[4]
5 Zheng J P, O’Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos, 2001, 57: 43-66
[5]
6 Wu F Y, Lin J Q, Wilde S, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103-119
14 Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, North China Craton, and implications for Archean lithosphere thinning. J Geol Soc, London, 2003, 160: 963-970
[9]
15 Guo F, Fan W M, Wang Y J. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: Implications for enrichment processes beneath continental collisional belt. Lithos, 2004, 78: 291-305
[10]
17 Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta, 2007, 71: 2609-2636
[11]
18 Wang Q, Wyman D A, Xu J F. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos, 2006, 89: 424-446
[12]
22 Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 2005, 79: 1-24
26 He Y S, Li S G, Hoefs J, et al. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 2011, 75: 3815-3838
[15]
28 Huang F, Li S G, Dong F. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chem Geol, 2008, 255: 1-13
[16]
29 Chen B, Jahn B M, Wei C J. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, central China: Trace element and Nd-Sr isotope evidence. Lithos, 2002, 60: 67-88
[17]
33 Chen B, Chen Z C, Jahn B M. Origin of mafic enclaves from the Taihang Mesozoic orogen, North China Craton. Lithos, 2009, 110: 343-358
[18]
34 Yang J H, Wu F Y, Chung S L, et al. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochim Cosmochim Acta, 2004, 68: 4469-4483
[19]
35 Janousek V, Braithwaite C J R, Bowesb D R. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: An integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 2004, 78: 67-99
[20]
37 Kumar S, Rino V, Pal A B. Field evidence of magma mixing from microgranular enclaves hosted in Palaeoproterozoic Malanjkhand granitoids, central India. Gondwana Res, 2004, 7: 539-548
40 Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt. Geology, 2007, 35: 351-354
49 Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: Implications for the origin of adakites. Contrib Mineral Petrol, 1994, 117: 394-409
[28]
51 Rollinson H. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman Scientific & Technical, 1993. 108-111
[29]
52 Ridolfi F, Renzulli A, Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol, 2010, 160: 45-66
[30]
53 Grove T L, Parman S W, Bowring S A, et al. The role of H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol, 2002, 142: 375-396
[31]
64 Reubi O, Blundy J. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 2009, 461: 1269-1273
[32]
65 He Y S, Li S G, Hoefs J, et al. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of a thickened continental crust. Geochim Cosmochim Acta, 2011, 75: 3815-3838
[33]
66 Huang X L, Zhong J W, Xu Y G. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton: Insights from Early Cretaceous mafic intrusions in western Shandong, East China. Geochim Cosmochim Acta, 2012, 96: 193-214
[34]
67 Yang Q L, Zhao Z F, Zheng Y F. Modification of subcontinental lithospheric mantle above continental subduction zone: Constraints from geochemistry of Mesozoic gabbroic rocks in southeastern North China. Lithos, 2012, 146: 164-182
[35]
1 Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198: 307-322
[36]
7 Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust. Geology, 2002, 30: 1111-1114
[37]
8 Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123-137
[38]
9 Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: Constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 2004, 147: 750-767
[39]
12 Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol, 2007, 153: 177-190
[40]
13 Chen B, Zhai M G. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geol Mag, 2003, 140: 87-93
[41]
16 Chen B, Jahn B M, Suzuki K. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 2012, doi: 10.1130/G33472.1
20 Defant M J, Richerson M, De Boer J Z, et al. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada volcanic complex, Panama. J Petrol, 1991, 32: 1101-1142
[44]
21 Defant M J, Jackson T E, Drummond M S, et al. Adakites from Panama and Costa Rica. J Geol Soc, 1992, 149: 569-579
[45]
23 Moyen J F. High Sr/Y and La/Yb ratios: The meaning of the ‘adakitic signature’. Lithos, 2009, 112: 556-574
27 Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 2007, 262: 533-542
[48]
30 Chen B, Jahn B M, Arakawa Y, et al. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China Craton: Elemental and Sr-Nd-Pb isotopic constraints. Contrib Mineral Petrol, 2004, 148: 489-501
[49]
31 Chen B, Zhai M G, Tian W. Origin of the Mesozoic magmatism in the north China craton: Constraints from petrological and geochemical data. In: Zhai M G, Windley B F, eds. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geol Soc, London Special Publication, 2007, 280: 131-151
[50]
32 Chen B, Tian W, Jahn B M, et al. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China Craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos, 2008, 102: 118-137
[51]
36 Kemp A I S. Petrology of high-Mg, low-Ti igneous rocks of the Glenelg River Complex (SE Australia) and the nature of their interaction with crustal melts. Lithos, 2004, 78: 119-156
[52]
39 Anderson A T, Magma mixing: Petrological process and volcanological tool. J Vol Geotherm Res, 1976, 1: 3-33
42 Green D H, Schmidt M W, Hibberson W O. Island-arc ankaramites: Primitive melts from fluxed refractory lherzolitic mantle. J Petrol, 2004, 45: 391-403
[55]
43 Chen B, Suzuki K, Tian W, et al. Geochemistry and Os-Nd-Sr isotopes of the Gaositai Alaskan-type ultramafic complex from northern North China Craton: Implications for mantle-crust interaction. Contrib Mineral Petrol, 2009, 158: 683-702
50 Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891-931
[58]
54 Guo F, Nakamuru E, Fan W M, et al. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. J Petrol, 2007, 48: 661-692
[59]
55 Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144-146
57 Walker R J, Carlson R W, Shirey S B, et al. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: Implications for the chemical evolution of subcontinental mantle. Geochim Cosmochim Acta, 1989, 53: 1583-1595
[62]
58 Chesley J, Righter K, Ruiz J. Large-scale mantle metasomatism: A Re-Os perspective. Earth Planet Sci Lett, 2004, 219: 49-60
[63]
59 Evans O C, Hanson G N. Late- to post-kinematic Archean granitoids of the S.W. Superior Province: Derivation through direct mantle melting. In: de Wit M J, Ashwal L D, eds. Greenstone Belts. Oxford, UK: Oxford University Press, 1997. 280-295
[64]
60 Langmuir C H, Vocke R D, Hanson G N, et al. A general mixing equation with implications to Iceland basalts. Earth Planet Sci Lett, 1978, 148: 193-205
[65]
61 Burton K W, Capmas F, Birck J L, et al. Resolving crystallization ages of Archean mafic-ultramafic rocks using the Re-Os isotope system. Earth Planet Sci Lett, 2000, 179: 453-467
[66]
62 Ellam R M, Carlson R W, Shirey S B. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature, 1992, 359: 718-721
[67]
63 Castillo P R. Adakite petrogenesis. Lithos, 2012, 134-135: 304-316