|
环境科学学报 2015
基于PCA-LSSVM的厌氧废水处理系统出水VFA在线预测模型Keywords: 厌氧消化 厌氧废水处理系统 主成分分析(PCA) 最小二乘法支持向量机(LSSVM) 挥发性脂肪酸(VFA) Abstract: 采用IC厌氧废水处理系统处理人工合成废水,并利用PCA-LSSVM模型对系统出水挥发性脂肪酸(VFA)进行预测.首先利用主成分分析法(PCA)分析影响厌氧废水出水VFA浓度的多个变量的相关性并降低输入变量维数,然后用网格搜索结合10倍交叉验证优化LSSVM 模型参数sig2和gam,最后利用建立的模型对实验数据进行仿真预测.仿真结果表明,稳态LSSVM模型对稳态条件下厌氧废水处理系统出水VFA具有很好的仿真预测能力,相对误差在4.72%以内,平均相对百分比误差(MAPE)为1.61%,均方根误差(RMSE)为1.08,相关系数达0.9996;稳态干扰LSSVM模型对厌氧废水处理系统出水VFA的仿真预测精度有所降低但仍然具有较好的预测能力,平均相对百分比误差(MAPE)为15.83%,均方根误差(RMSE)为15.45,相关系数为0.9984,该方法可为厌氧出水VFA在线预测和厌氧废水处理系统的优化控制提供指导
|