全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的GHSOM聚类算法的图像检索

, PP. 216-221

Keywords: 图像检索,聚类,GHSOM算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的图像检索需要顺序比较图像库中的图像与请求图像的相似度,检索速度和检索准确度都很低。针对此问题,提出了一种基于改进的增长型分层自组织映射网络(GHSOM)的图像检索方法。先将图像特征库用改进的GHSOM算法进行聚类,在图像检索时先在GHSOM网络模型上找到相似的类,然后在相似的类上继续进行检索,大大提高了检索效率。并且在搜索相似的类时充分利用GHSOM网络的分层结构,更进一步地提高了检索效率。改进的GHSOM网络根据算法的特点构建了赤迟信息量(AIC)准则,用该准则来选择每个独立的SOM网络的生长参数,使得每个网络都能正确地表达映射到它的数据集的结构,提高GHSOM网络的聚类效果,从而提高检索的准确性。实验结果表明,改进的GHSOM算法得到了更好的聚类效果,基于它的图像检索方法提高了将近3倍的图像匹配速度,同时图像检索准确率也得到了一定程度的提高。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133