全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SVM和RVM对高光谱图像分类的应用潜能分析

DOI: 10.11918/j.issn.0367-6234.2012.03.007, PP. 34-39

Keywords: 高光谱图像,分类,支持向量机,相关向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对高光谱图像分类一直面临的小样本、非线性及高维数等问题,分别从原理和实验两个方面分析比较了两种最新的核学习方法——支持向量机(SVM)和相关向量机(RVM)在高光谱图像分类中的异同点.通过对稀疏性、运算时间及分类精度的实验仿真,结果表明:与SVM相比,RVM模型更加稀疏,从而测试时间更短,更有利于大数据量在线测试;然而,RVM的缺点是分类精度略低于SVM.基于此,本文利用Fisher线性鉴别分析(FLDA)技术,在分类前对高光谱数据作可分性预处理,一方面可以降低数据维数、减少计算量,另一方面可以有效地提高小样本区域的分类精度,进而提高RVM的总体分类精度,使得RVM与SVM相比在高光谱图像精细分类方面更具优势.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133