|
福州大学学报(自然科学版) 1980
凸像多项式的从属性Abstract: 一.引言设函数f(z)在单位圆|Z|<1上单叶解析,它把单位圆片共形映射为凸形区域,则称f(z)为单位圆|z|I<1上的凸像函数。 设函数g(z)=z+是圆|z|<1上的凸像函数,它的n阶de la valee ponssin平 n=2均由下式定义[1]: 它们都是凸像多项式。特别当n=1,2,3.4时它们分别是设 和g+(z)=z+是两个幂级数,它们的 Hadamard乘积是指n=2 n=2幂级数记为n=2设函数f(z)=z+Z anzn在单位圆|Z|1<1上解析,而函数F(z)在单位圆|Z|<1上单叶 n=2解析。如果f(。)=F(。),…
|