全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于判别信息的近邻保持嵌入降维方法
Dimensionality reduction of neighborhood preserving embedding based on discrimination information

DOI: 10.7631/issn.1000-2243.2015.04.0466

Keywords: 降维 近邻保持嵌入 判别信息 局部结构
dimensionality reduction neighborhood preserving embedding discrimination information local structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统近邻保持嵌入算法(NPE)侧重保持样本的局部结构,而没有考虑样本类别信息的不足,提出判别局部近邻保持嵌入算法DLNPE. 该算法利用样本点的局部结构构造新定义下的类内类间散布矩阵,并以此作为判别信息引入目标函数. 在6个真实数据上进行实验,证明了所提算法的有效性.
Because traditional neighborhood preserving embedding (NPE) focuses on keeping a sample of local structure without taking category information into account,the discriminant local neighborhood preserving embedding algorithm is proposed. The algorithm use the local structure of samples points to construct the new definition within-class and between-class scatter matrix,which are introduced into the objective function as the discrimination information. The experimental results on six real data show that the algorithm is effective

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133