[1] Irvine HM. Cable Structures. Cambridge, Massachusetts: MIT Press, 1981
[2]
[2] Zui H, Shinke T, Namita Y. Practical formulas for estimation of cable tension by vibration method. Journal of Structural Engineering, 1996, 122(6): 651-656
[3]
[3] 张广成, 张都清, 陈祖坤等. 基于固有频率法的锅炉吊杆受力测试方法研究. 热力发电, 2008, 37(10): 39-42 (Zhang Guangcheng, Zhang Duqing, Chen Zukun, et al. Study on hanger rod tension test based on measurement of the natural frequency. Thermal Power Generation, 2008, 37(10): 39-42 (in Chinese))
[4]
[4] 刘志军, 陈国平, 党志杰. 检测斜拉索张力的振动法及其应用. 南京航空航天大学学报, 2006, 38(5): 609-612 (Liu Zhijun, Chen Guoping, Dang Zhijie. Vibration method for measurement of cable tension. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(5): 609-612 (in Chinese))
[5]
[5] 魏建东. 斜拉索各参数取值对索力测定结果的影响. 力学与实践, 2004, 26(4): 42-44 (Wei Jiandong. Effect of cable parameters on the determination of cable tension. Mechanics in Engineering, 2004, 26(4): 42-44 (in Chinese))
[6]
[6] 孟少平, 杨睿, 王景全. 一类精确考虑抗弯刚度影响的系杆拱桥索力测量新公式. 公路交通科技, 2008, 25(6): 87-91 (Meng Shaoping, Yang Rui, Wang Jingquan. Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity. Journal of Highway and Transportation Research and Development, 2008, 25(6): 87-91 (in Chinese))
[7]
[7] 李新生, 项贻强. 基于挠度曲线振型函数的系杆拱桥柔性吊杆索力测量公式. 工程力学, 2010, 27(8): 174-178 (Li Xinsheng, Xiang Yiqiang. Tension measurement formula of flexible hanger rods in tied-rods arch bridges based on vibration shape function of deflection curve. Engineer Mechanics, 2010, 27(8): 174-178 (in Chinese))
[8]
[8] 甘泉, 王荣辉, 饶瑞. 基于振动理论的索力求解的一个实用计算公式. 力学学报, 2010, 42(5): 983-988 (Gan Quan, Wang Ronghui, Rao Rui. Practical formula for estimation on the tensional force of cable by its measured natural frequencies. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 983-988 (in Chinese))