全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

轻质夹层多功能结构一体化设计

DOI: 10.6052/1000-0879-12-176, PP. 8-18

Keywords: 轻质结构,多功能结构,点阵结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于飞行器,减轻结构重量,提高有效载荷是设计者追求的永恒主题.飞行器通常处于较为特殊和复杂的环境下,因此除需要考虑结构的承载能力外,还应兼顾一种或多种功能.本文概述了集承载与热控、防热、电子、隐身、吸能、作动、储能、阻尼等多功能特性于一体的轻质夹层多功能结构研究成果,汇总了轻质夹层多功能结构在卫星、无人机、高超声速飞行器等领域的发展情况.最后,对轻质点阵多功能结构的发展前景进行了展望.

References

[1]  崔尔杰. 近空间飞行器研究发展现状及关键技术问题. 力学进 展, 2009, 39(6): 658-673 (Cui Erjie. Research statutes, de-velopment trends and key technical problems of near space flying vehicles. Advances in Mechanics, 2009, 39(6): 658-673 (in Chinese))
[2]  Seepersad CC, Dempsey BM, Allen JK, et al. Design of multifunctional honeycomb materials. AIAA Journal,2004, 42(5): 1025-1033
[3]  Michael O. Multifunctional structures: the future of space-craft design. In: 5th International Congress on Adaptive Structures, Sendai, Japan, Dec.5-7, 1994
[4]  Stern1 T, Anderson WG. High temperature lightweight heat pipe panel technology development. In: Proceedings of the Space Nuclear Conference 2005, San Diego, Califor-nia, June 5-9, 2005
[5]  Sihn S, Ganguli S, Anderson DP, et al. Enhancement of through thickness thermal conductivity of sandwich con-struction using carbon foam. Composites Science and Technology, 2012, 72(7): 767-773
[6]  赵望安. 复合材料点阵夹芯结构热载荷下的热力性能分析与 优化. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2010 (Zhao Wangan. The analysis and optimization of the thermo-mechanical properties for composite lattice structure. [Master Thesis]. Harbin: Harbin Institute of University,2010 (in Chinese))
[7]  Nunes MA. A biologically inspired methodology for multi-disciplinary design optimization. [Master Thesis]. Manoa: University of Hawai at Manoa, 2012.12
[8]  Williams AD, Underwood RL, Arritt BJ. Biologically in-spired multifunctional composite panel with integrated thermal control. AIAA 2010-2934.
[9]  蒋持平, 柴慧, 严鹏. 近空间高超声速飞行器防热隔热与热力耦 合研究进展. 力学与实践, 2011, 33(1): 1-9 (Jiang Chiping, Cai Hui, Yan Peng. Advances in thermal protection of near space hypersonic flying vehicles and related researches of thermo-mechanical coupling. Mechanics in Engineering,2011, 33(1): 1-9 (in Chinese))
[10]  Queheillalt DT, Carbajal G, Peterson GP, et al. A mul-tifunctional heat pipe sandwich panel structure. Interna-tional Journal of Heat and Mass Transfer, 2008, 51(1-2):312-326
[11]  Steeves CA, He MY, Kasen SD, et al. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles. Journal of Applied Mechanics, 2009, 76: 031014-1-9
[12]  Kasen SD, Queheillalt DT, Steeves CA, et al. A heat plate leading edge for hypersonic vehicles. In: ASME 2008 In-ternational Mechanical Engineering Congress and Exposi-tion, Boston, Massachusetts, USA, October 31-November6, 2008:175-181
[13]  Wadley HNG, Queheillalt DT. Thermal applications of cel-lular lattice structures. Materials Science Forum, 2007 (539-543): 242-247
[14]  卢天健, 刘涛, 邓子辰. 多孔金属材料多功能化设计的若干进展. 力学与实践, 2008, 30(1): 1-9 (Lu Tianjian, Liu Tao, Deng Zichen. Multifunctional design of cellular metals: a review. Mechanics in Engineering, 2008, 30(1): 1-9 (in Chinese))
[15]  Valdevit L, Vermaak N, Zok FW, et al. A materials selec-tion protocol for lightweight actively cooled panels. Journal of Applied Mechanics, 2008, 75: 061022-1-15
[16]  Wadley HNG. Multifunctional periodic cellular metals. Philosophical Transactions of The Royal Society A , 2006,364: 31-68
[17]  Moongkhamklang P, Deshpande VS, Wadley HNG. The compressive and shear response of titanium matrix compos-ite lattice structures. Acta Materialia, 2010, 58(8): 2822-2835
[18]  Sypeck DJ. Wrought aluminum truss core sandwich struc-tures. Metallurgical and Materials Transactions B, 2005,36: 125-131
[19]  Lu TJ, Valdevit L, Evans AG. Active cooling by metallic sandwich structures with periodic cores. Progress in Ma-terials Science, 2005, 50(7): 789-815
[20]  杨亚政, 杨嘉陵, 曾涛等. 轻质多孔材料研究进展. 力学季刊,2007, 28(4): 503-516 (Yang Yazheng, Yang Jialing, Ceng Tao, et al. Progress in research work of light materials. Chinese Quarterly of Mechanics, 2007, 28(4): 503-516 (in Chinese))
[21]  吴林志, 殷莎, 马力. 复合材料点阵夹芯结构的耦合换热及热 应力分析. 功能材料, 2010, 6(41): 969-972 (Wu Linzhi, Yin Sha, Ma Li. Coupled heat transfer and thermal stress anal-ysis of composite lattice core sandwich structure. Journal of Functional Materials, 2010, 6(41): 969-972 (in Chinese))
[22]  孙雨果, 高亮. 复合材料点阵夹芯结构的换热特性. 复合材 料学报, 2011, 28(4): 185-195 (Song Yuguo, Gao Liang. Heat transfer characteristics of composite sandwich struc-ture with lattice cores. Acta Materiae Compositae Sinica,2011, 28(4): 185-195 (in Chinese))
[23]  Liu JY, Zhou ZG, Ma L, et al. Temperature effects on the strength and crushing behavior of carbon fiber compos-ite truss sandwich cores. Composites Part B, 2011, 42(7):1860-1866
[24]  Bapanapalli SK. Design of an integral thermal protection system for future space vehicles. [PhD. Thesis]. Florida: Univeristy of Florida, 2007
[25]  方岱宁, 谷宇, 崔晓东等. 一种轻质多层热防护材料结构. 实用新型专利, 200920108418, 2010.9.8. (Fang Daining, Gu Yu, Cui Xiaodong, et al. A lightweight multi-layer thermal protection material structure. Utility Model Patent,200920108418, 2010.9.8.)
[26]  Barnett DM, Rawal SP. Multifunctional structures tech-nology experiment on deep space 1 mission. IEEE AES System Magazine, 1999. 13-18
[27]  Jang TS, Oh DS, Kim JK, et al. Development of multi-functional composite structures with embedded electronics for space application. Acta Astronautica, 2011, 68(1-2):240-252
[28]  Atxaga G, Marcos J, Segura M, et al. Multifunctional structures using high thermal conductivity fibres. AIAA-2006-661
[29]  Kothari RM. Design and analysis of multifunctional struc-tures for embedded electronics in unmanned aerial vehicles. [PhD Thesis]. West Lafayette, Indiana: Purdue University, May 2008
[30]  Son SH, Eom SY, Hwang WB. Development of a smart-skin phased array system with a honeycomb sandwich mi-crostrip antenna. Smart Mater Struct, 2008, 17: 035012:1-9
[31]  Cravery RL, Vedeler E, Goins L, et al. Structurally in-tegrated antenna concept for HALE UAVs. NASA/TM-2006-214513
[32]  Chen MJ, Pei YM, Fang DN. Computational method for radar absorbing composite lattice grids. Computational Materials Science, 2009, 46(3): 591-594
[33]  Fan HL, Yang W, Chao ZM. Microwave absorbing compos-ite lattice grids. Composite Science and Technology, 2007,67(15-16): 3472-3479
[34]  Wadley HNG, Dharmasena K, Chen Y, et al. Compres-sive response of multilayered pyramidal lattices during un-derwater shock loading. International Journal of Impact Engineering, 2008, 35(9): 1102-1114
[35]  Yungwirth CJ, Radforf DD, Aronson M, et al. Experiment assessment of the ballistic response of composite pyramidal lattice truss structures. Composites: Part B, 2008, 39(3):556-569
[36]  Lu TJ, Hutchinson JW, Evans AG. Optimal design of a flexural actuator. Journal of the Mechanics and Physics of Solids, 2001, 49(9): 2071-2093
[37]  Smith HB, Risseeuw PE. High authority morphing struc-tures. In: Washington DC, USA, ASME 2003 International Mechanical Engineering Congress and Exposition, Novem-ber 15-21, 2003: 399-403
[38]  Hutchinson RG, Wicks N, Evans AG, et al. Kagome plate structures for actuation. International Journal of Solids and Structures, 2003, 40(25): 6969-6980
[39]  Lucato SLD, McMeeking RM, Evans AG. Actuator place-ment optimization in a Kagome based high authority shape morphing structure. Smart Materials and Structures, 2005,14(4): 869-875
[40]  Guo X, Jiang J. Passive vibration control of truss-cored sandwich plate with planar Kagome truss as one face plane. Science China Technological Sciences, 2011, 54(5): 1113-1120
[41]  Tserpes KI, Labeas GN. Progressive fracture analysis of planar lattices and shape-morphing Kagome-structure. Theoretical and applied fracture mechanics, 2009, 51(1):41-47
[42]  Schwingshackl CW, Aglietti GS, Cunningham PR. The dy-namic behavior of multifunctional power structures. In:57th International Astronautical Congress, Valencia, 2006:1-9
[43]  Marcelli D, Summers J, Neudecker B. Libacore II: Power storage in primary structure. In: 43th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, 22-25 April, 2002
[44]  Samuel CR, Guglielmo SA. Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries. Acta Astronautica, 2010, 67(3-4):424-439
[45]  Aglietti GS, Schwingshackl CW, Roberts SC. Multifunc-tional structure technologies for satellite applications. The Shock and Vibration Digest, 2007, 39(5): 381-391
[46]  Roberts SC. An investigation of the feasibility of a space-craft multifunctional structure using commercial electro-chemical cells. [PhD Thesis]. School of Engineering Sci-ences. Southampton: University of Southampton, 2009
[47]  Rao MD, Echempati R, Nadella S. Dynamic analysis and damping of composite structures embedded with viscoelas-tic layers. Composites Part B: Engineering, 1997, 28(5-6):547-554
[48]  Wang B, Yang M. Damping of honeycomb sandwich beams. Journal of Materials processing Technology, 2000, 105(1-2):67-72
[49]  Jung W-Y, Aref AJ. A combined honeycomb and solid vis-coelastic material for structural damping application. Me-chanics of Materials, 2003, 35(8): 831-844
[50]  Woody SC, Smith ST. Damping of a thin walled honey-comb structure using energy absorbing foam. Journal of Sound and Vibration, 2006, 291(1-2): 491-502.
[51]  辛锋先, 张钱城, 卢天健. 轻质夹层材料的制备和振动声学性 能. 力学进展, 2010, 40(4): 375-399 (Xin Fengxian, Zhang Qiancheng, Lu Tianjian. Advances in lightweight sandwich materials and structures manufacture and vibroacoustic performances. Advances in Mechanics, 2010, 40(4): 375-399 (in Chinese))
[52]  李拓, 江俊. 点阵多孔金属夹芯板振动特性分析及优化设计. 动力学与控制学报, 2009, 7(1): 39-44 (Li Tuo, Jiang Jun. Vibration characteristics and optimization of truss-cored metal sandwich plates. Journal of Dynamics and Control,2009, 7(1): 39-44 (in Chinese))
[53]  娄佳, 马力, 吴林志. 复合材料四面体点阵夹芯梁的自由振动分 析. 固体力学学报, 2011, 32(4): 339-345 (Lou Jia, Ma Li, Wu Linzhi. Free vibration analysis of all-composite tetrahedral lattice truss core sandwich beam. Chinese Journal of Solid Mechanics, 2011, 32(4): 339-345(in Chinese))
[54]  Yin S, Ma L, Wu LZ. Carlon fiber composite lattice struc-ture filled with solion rubber. Procedia Engineering, 2012,10: 3191-3194
[55]  Yin S, Wu LX, Ma L, et al. Hybrid truss concepts for carbon fiber composite pyramidal lattice structures. Com-posites Part B: Engineering, 2012, 43(4): 1749-1755
[56]  Vaidya AS, Vaidya UK, Uddin N. Impact response of three dimensional multifunctional sandwich composite. Materi-als Science and Engineering A, 2008, 472(1-2): 52-58
[57]  吴林志, 熊健, 马力等. 新型复合材料点阵结构的研究进展. 力 学进展, 2012, 42(1): 1-27 (Wu Liuzhi, Xiong Jian, Ma Li, et al. Processes in the study on novel composite sandwich panels with lattice truss cores. Advances in Mechanics,2012, 42(1): 1-27 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133