全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

疲劳特性的红外热像定量分析方法研究进展

DOI: 10.6052/1000-0879-12-178, PP. 7-17

Keywords: 定量红外热像法,能量理论,热弹性应力分析,无损检测,疲劳性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

定量红外热像法,作为一种无损、全场、实时、非接触的测试手段,不仅能够用于对材料内部缺陷的无损检测,而且能够对在役结构的疲劳损伤演化状态进行识别.定量红外热像法还能够快速预测材料的疲劳极限和S-N(stress-numberofcycles)曲线,实验周期短,成本低.文中较为系统地综述了定量红外热像法的发展现状及应用,讨论了定量红外热像法应用过程中的几个重点问题.最后总结展望了定量红外热像法的未来发展方向及应用前景.

References

[1]  36 Carlomagno GM, Berardi PG. Unsteady thermotopogra-phy in non-destructive testing. In: Warren C, ed. Proceed-ings of the III Infrared Information Exchange, St. Louis,USA, 1976-08-24-26. 33-39
[2]  37 Saintey MB, Almond DP. Defect sizing by transient ther-mography. II. A numerical treatment. Journal of PhysicsD: Applied Physics, 1995, 28(12): 2539-2546
[3]  38 Choi M, Kang K, Park J, et al. Quantitative determinationof a subsurface defect of reference specimen by lock-in in-frared thermography. NDT & E International, 2008, 41(2):119-124
[4]  39 Meola C, Carlomagno GM, Squillace A, et al. Non-destructive evaluation of aerospace materials with lock-inthermography. Engineering Failure Analysis, 2006, 13(3):380-388
[5]  40 刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量. 光学精密工程, 2010, 18(1): 37-44 (Liu Junyan, Dai Jing-min,Wang Yang. Thermal wave detection and defect depthmeasurement based on lock-in thermography. Optics andPrecision Engineering, 2010, 18(1): 37-44 (in Chinese))
[6]  41 刘颖韬, 郭广平, 杨党纲. 脉冲相位法用于复合材料层析检测的研究. 激光与红外: 红外技术, 2009, 39(14): 390-392 (LiuYingtao, Guo Guangping, Yang Danggang. Pulsed phaseinfrared thermography and its application in thermal to-mography of composite materials. Laser & Infrared: In-frared Technology, 2009, 39(14): 390-392 (in Chinese))
[7]  42 刘颖韬, 郭广平, 杨党纲等. 脉冲热像法在航空复合材料构件无损检测中的应用. 航空材料学报, 2012, 32(1): 72-77 (LiuYingtao, Guo Guangping, Yang Danggang, et al. Pulsedthermography of composites used in aerospace applications.Jouranl of Aeronautical Materials, 2012, 32(1): 72-77 (inChinese))
[8]  43 Cavaliere P, Rossi GL, Di Sante R, et al. Thermoelasticityfor the evaluation of fatigue behavior of 7005/Al2O3/10pmetal matrix composite sheets joined by FSW. Interna-tional Journal of Fatigue, 2008, 30(1): 198-206
[9]  44 徐军, 黄毅, 林雪荣. 红外热成象技术在金属疲劳断裂过程中的应用. 红外技术, 1989, 11(2): 11-21 (Xu Jun, Huang Yi, LinXuerong. Application of infrared thermography on fatiguefracture of metal. Infrared Technology, 1989, 11(2): 11-21(in Chinese))
[10]  45 姚磊江, 李斌, 童小燕. 疲劳过程热耗散与表面微观结构演化相关性的试验研究. 西北工业大学学报, 2008, 26(2): 225-228(Yao Leijiang, Li Bin, Tong Xiaoyan. Experimental studyof the correlation between energy dissipation and surfacemicrostructure evolution during fatigue. Journal of North-western Polytechnical University, 2008, 26(2): 225-228 (inChinese))
[11]  46 Pieczyska EA, Gadak SP, Nowacki WK. Temperaturechanges in polyamide subjected to low cyclic deformation.Infrared Physics and Technology, 2002, 43(3-5): 183-186
[12]  47 Emery TR, Dulieu-Barton JM. Thermoelastic stress anal-ysis of damage mechanisms in comoposite materials. Com-posites: Part A, 2010, 41(12): 1729-1742
[13]  48 Clienti C, Fargione G, La Rosa G, et al. A first approach tothe analysis of fatigue parameters by thermal variations instatic tests on plastics. Engineering Fracture Mechanics,2010, 77(11): 2158-2167
[14]  49 Krstulovic-Opara L, Klarin B, Neves P, et al. Thermalimaging and thermoelastic stress analysis of impact dam-age of composite materials. Engineering Failure Analysis,2011, 18(2): 713-719
[15]  50 La Rosa G, Risitano A. Thermographic methodology forrapid determination of the fatigue limit of materials andmechanical components. International Journal of Fatigue,2000, 22(1): 65-73
[16]  51 Luong MP. Infrared thermographic scanning of fatigue inmetals. Nuclear Engineering and Design, 1995, 158(2-3):363-376
[17]  52 Crupi V, Chiofalo G, Guglielmino E. Using Infrared ther-mography in low-cycle fatigue studies of welded joints.Welding Journal, 2010, 89: 195-200
[18]  53 Kaleta J, Blotny R, Harig H. Energy stored in a specimenunder fatigue limit loading conditions. Journal of Testingand Evaluation, 1990, 19(4): 326-333
[19]  54 曾伟, 韩旭, 丁桦等. 基于红外热象技术的金属材料疲劳性能研究方法. 机械强度, 2008, 30(4): 658-663 (Zeng Wei, Han Xu,Ding Hua, et al. Fatigue characterisitics evaluation of met-als based on infrared thermographic technique. Journal ofMechanical Strength, 2008, 30(4): 658-663 (in Chinese))
[20]  55 Meneghetti G. Analysis of the fatigue strength of a stain-less steel based on the energy dissipation. InternationalJournal of Fatigue, 2007, 29(1): 81-94
[21]  56 Chrysochoos A, Pham H, Maisonneuve O. Energy balanceof thermoelastic martensite transformation under stress.Nuclear Engineering and Design, 1996, 162(1): 1-12
[22]  57 Boulanger T, Chrysochoos A, Mabru C, et al. Calorimetricanalysis of dissipative and thermoelastic effects associatedwith the fatigue behavior of steels. International Journalof Fatigue, 2004, 26(3): 221-229
[23]  58 Berthel B, Chrysochoos A, Wattrisse B, et al. Infrared im-age processing for the calorimetric analysis of fatigue phe-nomena. Experimental Mechanics, 2008, 48(1): 79-90
[24]  59 Sakai T. Review and prospects for current studies on veryhigh cycle fatigue of metallic materials for machine struc-tural use. Journal of Solid Mechnics and Materials Engi-neering, 2009, 3(2): 425-439
[25]  60 Pastor M L, Balandraud X, Grediac M, et al. Applying in-frared thermography to study the heating of 2024-T3 alu-minium specimens under fatigue loading. Infrared Physics& Tehcnology, 2008, 51(6): 505-515
[26]  18 Pandey KN, Chand S. An energy based fatigue crackgrowth model. International Journal of Fatigue, 2003,25(8): 771-778
[27]  19 Lee BL, Kim KS, Nam KM. Fatigue analysis under varableamplitude loading using an energy parameter. Interna-tional Jouranl of Fatigue, 2003, 25(7): 621-631
[28]  20 Karolczuk A, Macha E. A review of critical plane orienta-tions in multiaxial fatigue failure criteria of metallic ma-terials. International Journal of Fracture, 2005, 134(3-4):267-304
[29]  21 Jahed H, Varvani-Farahani A, Noban M, et al. An energy-based fatigue life assessment model for various metallicmaterials under proportional and non-proportional laodingconditions. International Journal of Fatigue, 2007, 29(4):647-655
[30]  22 Audenino AL, Crupi V, Zanetti EM. Correlation betweenthermography and internal damping in metals. Interna-tional Jouranl of Fatigue, 2003, 25(4): 343-351
[31]  23 Yang B, Liaw PK, Morrison M, et al. Temperature evolu-tion during fatigue damage. Intermetallics, 2005, 13(3-4):419-428
[32]  24 Crupi V. An unifying approach to assess the structuralstrength. International Journal of Fatigue, 2008, 30(7):1150-1159
[33]  25 樊俊铃, 郭杏林, 赵延广等. 定量热像法预测焊接接头的S-N曲线和残余寿命. 材料工程, 2011, (12): 29-33 (Fan Jun-ling, Guo Xinglin, Zhao Yanguang, et al. Predictions ofS-N curve and residual life of welded joints by quantitativethermographic method. Journal of Materials Engineering,2011, (12): 29-33 (in Chinese))
[34]  26 Todhunter I, Pearson K. History of the Theory of Elasticityand of the Strength of Materials. Cambridge: CambridgeUniversity Press, 1886. 291-364
[35]  27 Stanley P. Applications and potential of thermoelasticstress analysis. Journal of Materials Processing Technol-ogy, 1997, 64(1-3): 359-370
[36]  28 Dulieu-Barton JM, Stanley P. Development and applica-tions of thermoelastic stress analysis. The Journal ofStrain Analysis for Engineering Design, 1998, 33(2): 93-104
[37]  29 Greene RJ, Patterson EA. Integrating thermoelastic andnumerical stress methods for reliable analysis. The Jour-nal of Strain Analysis for Engineering Design, 2003, 38(4):303-312
[38]  30 El-Hajjar R, Haj-Ali R. A quantitative thermoelastic stressanalysis method for pultruded composite. Composite Sci-ence and Technology, 2003, 63(7): 967-978
[39]  31 Quinn S, Bulieu-Barton JM, Langlands JM. Progress inthermoelastic residual stress measurement. Strain, 2004,40(3): 127-133
[40]  32 Diaz FA, Patterson EA, Tomlinson RA, et al. Measuringstress intensity factors during fatigue crack growth usingthermoelasticity. Fatigue & Fracture of Engineering Ma-terials & Structures, 2004, 27(7): 571-584
[41]  33 Stanley P, Chan WK. The application of thermoelasticstress analysis techniques to composite materials. The Journal of Strain Analysis for Engineering Design, 1988,23(3): 137-143
[42]  34 Emery TR, Dulieu-Barton JM, Earl JS, et al. A gener-alised approach to the calibration of orthotropic materialsfor thermoelastic stress analysis. Composite Science andTechnology, 2008, 68(3-4): 743-752
[43]  35 Haj-Ali R, Wei B, Johnson S, et al. Thermoelasticand infrared-thermography methods for surface strains incracked orthotropic composite materials. Engeering Frac-ture Mechanics, 2008, 75(1): 58-75
[44]  1 Inglis NP. Hysteresis and fatigue of Wohler rotating can-tilever specimen. The Metallurgist, 1927, 1(1): 23-27
[45]  2 Luong MP. Fatigue limit evaluation of metals using aninfrared thermographic method. Mechanics of Materials, 1998, 28(1-4): 155-163
[46]  3 Fargione G, Geraci A, La Rosa G, et al. Rapid determi-nation of the fatigue curve by the thermographic method.International Journal of Fatigue, 2002, 24(1): 11-19
[47]  4 Curμa F, Curti G, Sesana R. A new iteration method forthe thermographic determination of fatigue limit in steels.International Journal of Fatigue, 2005, 27(4): 453-459
[48]  5 刘浩, 曾伟, 丁桦等. 利用红外热像技术快速确定材料疲劳极限.力学与实践, 2007, 29(4): 36-39 (Liu Hao, Zeng Wei, DingHua, et al. Fatigue limit fast evaluation using an infraredthermographic technique. Mechanics in Engineering, 2007,29(4): 36-39 (in Chinese))
[49]  6 Ummenhofer T, Medgenberg J. On the use of infraredthermography for the analysis of fatigue damage processin welded joints. International Journal of Fatigue, 2009,31(1): 130-137
[50]  7 Risitano A, Risitano G. Cumulative damage evaluation ofsteel using infrared thermography. Theoretical and AppliedFracture Mechanics, 2010, 54(2): 82-90
[51]  8 Kim J, Jeong HY. A study on the hysteresis, surface tem-perature change and fatigue life of SM490A, SM490A-weldand FC250 metal materials. International Journal of Fa-tigue, 2010, 32(7): 1159-1166
[52]  9 Fan JL, Guo XL,Wu CW, et al. Research on fatigue behav-ior evaluation and fatigue fracure mechanisms of cruciformwelded joints. Materials Science and Engineering A, 2011,528(29-30): 8417-8427
[53]  10 樊俊铃, 郭杏林, 吴承伟等. 热处理对FV520B 钢疲劳性能的影响. 材料研究学报, 2012, 26(1): 61-67 (Fan Junling, GuoXinglin, Wu Chengwei, et al. Effect of heat treatments onfatigue properties of FV520B steel using infrared thermog-raphy. Chinese Journal of Materials Research, 2012, 26(1):61-67 (in Chinese))
[54]  11 郭杏林, 王晓钢. 疲劳热像法研究综述. 力学进展, 2009, 39(2):217-227 (Guo Xinglin, Wang Xiaogang. Overview on thethermographic method for fatigue research. Advances inMechanics, 2009, 39(2): 217-227 (in Chinese))
[55]  12 童小燕, 姚磊江, 吕胜利. 疲劳能量方法研究回顾. 机械强度, 2004, 26(s): 216-221 (Tong Xiaoyan, Yao Leijiang, LüShengli. Review on fatigue energy theory. Journal of Me-chanical Strength, 2004, 26(s): 216-221 (in Chinese))
[56]  13 Glinka G, Shen G, Plumtree A. A multiaxial fatigue strainenergy density parameter related to the critical fractureplane. Fatigue & Fracture of Engineering Materials &Structures, 1995, 18(1): 37-46
[57]  14 Lagoda T, Macha E, Bedkowski W. A critical plane ap-proach based on energy concepts: Application to biaxialrandom tension-compression high-cycle fatigue regime. In-ternational Journal of Fatigue, 1999, 21(5): 431-443
[58]  15 轩福贞, 孙树勋, 汤红卫等. 复合材料层板疲劳损伤的有效能耗分析法. 复合材料学报, 1997, 14(3): 115-124 (Xuan Fuzhen,Sun Shuxun, Tang Hongwei, et al. Effective energy dis-sipation analysis method for fatigue damage of laminatedcomposite. Acta Materiae Composite Sinica, 1997, 14(3):115-124 (in Chinese))
[59]  16 Tchankov DS, Vesselinov KV. Fatigue life prediction underrandom loading using total hysteresis energy. InternationalJournal of Pressure Vessels and Piping, 1998, 75(13): 955-960
[60]  17 Lagoda T. Energy models for fatigue life estimation underuniaxial random loading: Part I: The model elaboration.International Journal of Fatigue, 2001, 23(6): 467-480

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133