1 王照林, 邓重平. 失重时球腔内液体晃动特性的研究. 空间科 学学报, 1985, 4(5): 294-302 (Wang Zhaolin, Deng Zhong-ping. Sloshing of liquid in spherical tank at low-gravity en-vironments. Chinese Journal of Space Science, 1985, 4(5):294-302(in Chinese))
[2]
2 王照林, 程绪铎, 全斌. 微重条件下两底为半球面腰为圆柱面的 贮箱中液体的晃动特性. 力学与实践, 1991, 1(3): 24-27 (Wang Zhaolin, Cheng Xuduo, Quan Bin. Characteristics of slosh-ing in tank with two hemispherical bottoms and cylindrical middle. Mechanics in Engineering, 1991, 1(3): 24-27(in Chinese))
[3]
18 岳宝增, 彭武. 俯仰激励下液体大幅晃动问题研究. 力学与实践,2004, 26(5): 49-52 (Yue Baozeng, Peng Wu. Liquid slosh-ing of large amplitude in a container under pitching exci-tation. Mechanics in Engineering, 2004, 26(5): 49-52(in Chinese))
[4]
19 郑磊, 李俊峰, 王天舒等. 计算液体晃动ALE 网格速度的高 精度方法. 力学与实践, 2007, 29(1): 14-16 (Zheng Lei, Li Junfeng, Wang Tianshu, et al. A precision method to com-pute the ALE grid velocity in liquid sloshing simulation. Mechanics in Engineering, 2007, 29(1): 14-16(in Chinese))
[5]
20 王为. 表面活性物质对物体晃动阻尼影响分析及计算. 力学与实 践, 2011, 33(3): 7-10 (Wang Wei. Analysis and numeri-cal calculation of sloshing damping caused by surfactant. Mechanics in Engineering, 2011, 33(3): 7-10(in Chinese))
[6]
21 Peterson LD. The Nonlinear Coupled Dynamics of Fluids and Spacecraft in Low Gravity. Boston: Massachusetts In-stitute of Technology, 1987
[7]
22 Van Schoor MC. The Coupled Nonlinear Dynamics of Spacecraft with Fluids in Tanks of Arbitrary Geometry. Boston: Massachusetts Institute of Technology, 1989
3 程绪铎,王照林. 微重力环境下旋转对称贮箱内静液面方 程Runge-Kutta 数值解. 计算物理, 2000, 17(3): 273-279 (Cheng Xuduo, Wang Zhaolin. The equation and the nu-merical analysis of static fluid surface in revolving symmet-rical tank under low gravity. Chinese Journal of Compu-tational Physics, 2000, 17(3): 273-279(in Chinese))
[10]
4 杨旦旦, 岳宝增, 祝乐梅等. 用打靶法求解微重力下矩形和旋 转对称贮箱内静液面形状. 空间科学学报, 2012, 32(1): 85-91 (Yang Dandan, Yue Baozeng, Zhu Lemei, et al. Solving shapes of hydrostatic surface in rectangular and revolv-ing symmetrical tanks in microgravity. Chinese Journal of Space Science, 2012, 32(1): 85-91(in Chinese))
[11]
5 Luke JC. A variational principle for a fluid with a free sur-face. Journal of Fluid Mechanics, 1967, 27(2): 395-397
[12]
6 余延生. 一类Cassini 贮箱液体小幅晃动问题的研究. 哈尔滨: 哈尔滨工业大学, 2004 (Yu Yansheng. Study on Small Am-plitude Sloshing in a Kind of Cassini Tank. Harbin: Harbin Institute of Technology, 2004(in Chinese))
[13]
7 李云翔. 微重力下充液航天器液-刚耦合非线性动力学研究. [硕 士论文]. 北京:北京理工大学,2004 (Li Yunxiang. Study on Liquid-rigid Coupling Nonlinear Dynamics of Liquid-filled Spacecraft in microgravity. [Master Thesis]. Beijing: Bei-jing Institute of Technology, 2004 (in Chinese))
[14]
8 Utsumi M. The meniscus and sloshing of a liquid in an ax-isymmetric container at low-gravity. JSME, 1990, 33(3):346-356
[15]
9 Utsumi M. Low-gravity propellant slosh analysis using spherical coordinates. Journal of Fluid Mechanics, 1998,12(1): 57-83
[16]
10 Utsumi M. Low-gravity sloshing in an axisymmetrical con-tainer excited in the axial direction. Transactions of the ASME, 2000, 67(2): 344-354
[17]
11 Utsumi M. A mechanical model for low-gravity sloshing in an axisymmetric tank. Transactions of the ASME, 2004,71(5): 724-730
[18]
12 Utsumi M. Low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom. Journal of Spacecraft and Rockets, 2008, 45(4): 813-821
[19]
13 Yue BZ. Nonlinear coupled dynamics of liquid-filled spher-ical container in microgravity. Applied Mathematics and Mechanics, 2008, 29(8): 1085-1092
[20]
14 Yue BZ. Coupling frequency of the liquid sloshing in a cylin-drical tank with a flexible ba2e. Journal of Beijing Insti-tute of Technology, 2006, 15(1): 1-4
[21]
15 Yue BZ. ALE fractional step finite element method for fluid-structure nonlinear interaction problem. Journal of Beijing Institute of Technology, 2006, 15(1): 5-8
[22]
16 Yue BZ, Wang ZL. Numerical study of three-dimensional liquid free surface dynamics. Acta Mechanica Sinica, 2006,22(2): 120-125
[23]
17 Yue BZ. Nonlinear phenomena of three-dimensional liquid sloshing microgravity environment. Chinese Science Bul-letin, 2006, 51(20): 2425-2431