全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微重力下圆柱形贮箱内液体晃动的分岔现象

DOI: 10.6052/1000-0879-12-416

Keywords: 微重力,圆柱形贮箱,液体晃动,耦合动力学,分岔

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了得到微重力下液体晃动的特性,晃动模态用具有水平静液面的液体晃动模态近似.液体晃动取前5个重要模态,用Lagrange方程推导了横向力作用下液体晃动和航天器结构的无量纲的耦合动力学方程并进行数值模拟.模拟了液体晃动模态随外力振幅和频率变化产生的分岔现象,并分析了系统参数,如Bond数、接触角、接触角迟滞、充液高度、频率比、质量比以及外力的周期形式和方向等对晃动模态的分岔的影响.

References

[1]  1 王照林, 邓重平. 失重时球腔内液体晃动特性的研究. 空间科 学学报, 1985, 4(5): 294-302 (Wang Zhaolin, Deng Zhong-ping. Sloshing of liquid in spherical tank at low-gravity en-vironments. Chinese Journal of Space Science, 1985, 4(5):294-302(in Chinese))
[2]  2 王照林, 程绪铎, 全斌. 微重条件下两底为半球面腰为圆柱面的 贮箱中液体的晃动特性. 力学与实践, 1991, 1(3): 24-27 (Wang Zhaolin, Cheng Xuduo, Quan Bin. Characteristics of slosh-ing in tank with two hemispherical bottoms and cylindrical middle. Mechanics in Engineering, 1991, 1(3): 24-27(in Chinese))
[3]  18 岳宝增, 彭武. 俯仰激励下液体大幅晃动问题研究. 力学与实践,2004, 26(5): 49-52 (Yue Baozeng, Peng Wu. Liquid slosh-ing of large amplitude in a container under pitching exci-tation. Mechanics in Engineering, 2004, 26(5): 49-52(in Chinese))
[4]  19 郑磊, 李俊峰, 王天舒等. 计算液体晃动ALE 网格速度的高 精度方法. 力学与实践, 2007, 29(1): 14-16 (Zheng Lei, Li Junfeng, Wang Tianshu, et al. A precision method to com-pute the ALE grid velocity in liquid sloshing simulation. Mechanics in Engineering, 2007, 29(1): 14-16(in Chinese))
[5]  20 王为. 表面活性物质对物体晃动阻尼影响分析及计算. 力学与实 践, 2011, 33(3): 7-10 (Wang Wei. Analysis and numeri-cal calculation of sloshing damping caused by surfactant. Mechanics in Engineering, 2011, 33(3): 7-10(in Chinese))
[6]  21 Peterson LD. The Nonlinear Coupled Dynamics of Fluids and Spacecraft in Low Gravity. Boston: Massachusetts In-stitute of Technology, 1987
[7]  22 Van Schoor MC. The Coupled Nonlinear Dynamics of Spacecraft with Fluids in Tanks of Arbitrary Geometry. Boston: Massachusetts Institute of Technology, 1989
[8]  23 马兴瑞, 王本利, 苟兴宇. 航天器动力学: 若干问题进展及应用. 北京:科学出版社,2001
[9]  3 程绪铎,王照林. 微重力环境下旋转对称贮箱内静液面方 程Runge-Kutta 数值解. 计算物理, 2000, 17(3): 273-279 (Cheng Xuduo, Wang Zhaolin. The equation and the nu-merical analysis of static fluid surface in revolving symmet-rical tank under low gravity. Chinese Journal of Compu-tational Physics, 2000, 17(3): 273-279(in Chinese))
[10]  4 杨旦旦, 岳宝增, 祝乐梅等. 用打靶法求解微重力下矩形和旋 转对称贮箱内静液面形状. 空间科学学报, 2012, 32(1): 85-91 (Yang Dandan, Yue Baozeng, Zhu Lemei, et al. Solving shapes of hydrostatic surface in rectangular and revolv-ing symmetrical tanks in microgravity. Chinese Journal of Space Science, 2012, 32(1): 85-91(in Chinese))
[11]  5 Luke JC. A variational principle for a fluid with a free sur-face. Journal of Fluid Mechanics, 1967, 27(2): 395-397
[12]  6 余延生. 一类Cassini 贮箱液体小幅晃动问题的研究. 哈尔滨: 哈尔滨工业大学, 2004 (Yu Yansheng. Study on Small Am-plitude Sloshing in a Kind of Cassini Tank. Harbin: Harbin Institute of Technology, 2004(in Chinese))
[13]  7 李云翔. 微重力下充液航天器液-刚耦合非线性动力学研究. [硕 士论文]. 北京:北京理工大学,2004 (Li Yunxiang. Study on Liquid-rigid Coupling Nonlinear Dynamics of Liquid-filled Spacecraft in microgravity. [Master Thesis]. Beijing: Bei-jing Institute of Technology, 2004 (in Chinese))
[14]  8 Utsumi M. The meniscus and sloshing of a liquid in an ax-isymmetric container at low-gravity. JSME, 1990, 33(3):346-356
[15]  9 Utsumi M. Low-gravity propellant slosh analysis using spherical coordinates. Journal of Fluid Mechanics, 1998,12(1): 57-83
[16]  10 Utsumi M. Low-gravity sloshing in an axisymmetrical con-tainer excited in the axial direction. Transactions of the ASME, 2000, 67(2): 344-354
[17]  11 Utsumi M. A mechanical model for low-gravity sloshing in an axisymmetric tank. Transactions of the ASME, 2004,71(5): 724-730
[18]  12 Utsumi M. Low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom. Journal of Spacecraft and Rockets, 2008, 45(4): 813-821
[19]  13 Yue BZ. Nonlinear coupled dynamics of liquid-filled spher-ical container in microgravity. Applied Mathematics and Mechanics, 2008, 29(8): 1085-1092
[20]  14 Yue BZ. Coupling frequency of the liquid sloshing in a cylin-drical tank with a flexible ba2e. Journal of Beijing Insti-tute of Technology, 2006, 15(1): 1-4
[21]  15 Yue BZ. ALE fractional step finite element method for fluid-structure nonlinear interaction problem. Journal of Beijing Institute of Technology, 2006, 15(1): 5-8
[22]  16 Yue BZ, Wang ZL. Numerical study of three-dimensional liquid free surface dynamics. Acta Mechanica Sinica, 2006,22(2): 120-125
[23]  17 Yue BZ. Nonlinear phenomena of three-dimensional liquid sloshing microgravity environment. Chinese Science Bul-letin, 2006, 51(20): 2425-2431

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133