全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于Euler-Bernoulli梁几何非线性方程的讨论

DOI: 10.6052/1000-0879-12-014, PP. 77-80

Keywords: Euler-Bernoulli,,几何非线性,轴向应变,弹性曲线,曲率

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Lagrange描述,导出了轴线可伸长Euler-Bernoulli梁在大变形状态下的轴向应变、弹性线的曲率以及平衡方程的精确表示式.通过引入轴线伸长率函数,并将变形后轴线的弧长作为基本未知函数之一,不仅精确地计入了轴线伸长,而且还使得问题的求解区间仍然为梁的原长.进一步给出了分别以变形前后的轴线弧长及变形后轴线的纵向坐标为自变量的弹性线的曲率公式,讨论了在不同假设条件下轴线的应变和弹性线曲率的近似表示.

References

[1]  1 Euler L, De Elasticis C. Methodus Inveniendi Lineas Cur-ras Maximi Minimive Proprietate Ganudentes. Lausanne & Geneva: Marcum-Michaelem Bosquet & Souos, 1744
[2]  2 Lagrange JL. Qeuvres de Lagrange. Paris: Gauthier-Villars, 1868
[3]  3 Love AEH. Treaties on the Mathematical Theory of Elas-ticity. New York: Diver, 1927
[4]  4 Timoshenko SP, Gere JM. Theory of Elastic Stability. 2nd Ed. New York: MacGraw-Hill, 1961
[5]  5 Wang CY. Post-buckling of a clamped-simply supported elastica. International Journal of Non-linear Mechanics,1997, 32(6): 1115-1122
[6]  6 Plaut RH, Suherman S, Dillard DA, et al. Deflections and buckling of a bent elastics in contact with a flat surface. In-ternational Journal of Solids and Structures, 1999, 36(8):1209-1229
[7]  7 Lee K. Post-buckling of uniform cantilever column under a combined load. International Journal of Non-linear Me-chanics, 2001, 36(5): 813-816
[8]  8 刘延柱. 弹性杆基因模型的力学问题. 力学与实践, 2003, 25(1):1-5 (Liu Yanzhu. Mechanical problems on elastic rod model of DNA. Mechanics in Engineering, 2003, 25(1): 1-5 (in Chinese))
[9]  9 刘延柱. 超大变形弹性细杆几何形态的拓扑描述. 力学与实践,2004,26(5): 68-70 (Liu Yanzhu. Topological description of the configuration of a thin elastic rod with superlarge deformation. Mechanics in Engineering, 2003, 25(1): 1-5 (in Chinese))
[10]  10 Phungapalngam B, Chucheepsakul S, Wang CM. Post-buckling of beam subjected to intermediate follower force. Journal of Engineering Mechanics, 2006, 132(1): 16-25
[11]  11 Vaz MA, Silva DFC. Post-buckling analysis of slender elas-tic rods subjected to terminal forces. International Journal of Non-linear Mechanics, 2003, 38(4): 483-492
[12]  12 Tiersten HF. On the derivation of the equation for the deflection of thin beams. Mathematics and Mechanics of Solids, 2006, 11(2): 176-180
[13]  13 潘文波, 李银山, 李彤等. 细长压杆弹性失稳后挠曲线形状的计 算机仿真. 力学与实践, 2012, 34(1): 48-51 (Pan Wenbo, Li Yinshan, Li Tong, et al. Computer simulation of deflection curve shape for the slender, flexible, compressed bar after buckling. Mechanics in Engineering, 2012, 34(1): 46-51 (in Chinese))
[14]  14 Stemple T. Extensional beam-columns: An exact theory. International Journal of Non-Linear Mechanics, 1990, 25:615-623
[15]  15 Jekot T. Non-linear problems of thermal buckling of a beam. Journal of Thermal Stresses, 1999, 19(4): 359-369
[16]  16 Filipich CP, Rosales MB. A further study on the post-buckling of extensible elastic rids. International Journal of Non-Linear Mechanics, 2000, 35(5): 997-1022
[17]  17 Coffin DW, Bloom F. Elastica solution for the hygrother-mal buckling of a beam. International Journal of Non-Linear Mechanics, 1999, 34(5): 935-947
[18]  18 Vaz MA, Solano RF. Post-buckling analysis of slender elas-tic rods subjected to uniform thermal loads. Journal of Thermal Stresses, 2003, 26(9): 847-860
[19]  19 Li SR, Zhou YH, Zheng XJ. Thermal post-buckling of a heated elastic rod with pinned-fixed ends. Journal of Ther-mal Stresses, 2002, 25(1): 45-56
[20]  20 Li SR, Batra RC. Thermal buckling and post-buckling of Euler-Bernoulli beams supported on nonlinear elastic foun-dations. AIAA Journal, 2007, 45(3): 711-720
[21]  21 李世荣, 李忠明. 压杆过屈曲分析中轴线无伸长假设的定量讨论. 兰州大学学报(自然科学版), 1997, 33(40): 42-46 (Li Shirong, Li Zhongming. A quantitative discussion on assumption of non-extension of the axis in the analysis of post-buckling of compressed bars. Journal of Lanzhou University (Natural Science), 1997, 33(40): 42-46 (in Chinese))
[22]  22 李清禄,李世荣. 功能梯度压杆后屈曲形态的数值计算. 力学与 实践,2010, 32(6): 39-42 (Li Qinglu, Li Shirong. Numerical calculation of the post-buckling configuration of function-ally graded compressed column. Mechanics in Engineering,2010, 32(6): 39-42 (in Chinese))
[23]  23 刘延柱,薛纭. 关于弹性梁的模型. 力学与实践,2011, 33(1):74-77 (Liu Yanzhu, Xue Yun. Models about elastic beams. Mechanics in Engineering, 2011, 33(1): 74-77 (in Chinese))
[24]  24 薛纭,翁德玮. 轴线存在应变时弹性杆力学的两个概念. 力学与 实践,2011, 33(5): 65-67 (Xue Yun, Weng Dewei. Two con-cepts of mechanics on elastic columns when strains exist in the axis. Mechanics in Engineering, 2011, 33(5): 65-67 (in Chinese))
[25]  25 李世荣. 非线性柔韧梁板结构的热过屈曲和振动. [博士论文]. 兰州: 兰州大学, 2003 (Li Shirong. Thermal post-buckling and vibration of nonlinear flexible structures of beams and plates. [PhD Thesis]. Lanzhou: Lanzhou University, 2003 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133