全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

缺口件疲劳特性研究方法

DOI: 10.6052/1000-0879-14-279

Keywords: 缺口件,局部应力&mdash,&mdash,应变法,应力场强度方法,临界距离理论,有限元方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

缺口件疲劳问题的研究日益引起各国学者的重视.局部应力-应变法以其简单性在工程中得到了广泛应用,该方法通常会得到偏于安全的结果.引入疲劳缺口因子代替弹性应力集中因子针对缺口疲劳进行研究,仍未能从本质上改善预测结果的准确性.考虑到"热点应力"附近的相对应力梯度,提出了应力梯度法研究缺口件疲劳问题,这一概念亦被用于应力场强度方法中,如何准确确定损伤区域是应力场强度方法需要解决的问题.临界距离理论可将Neuber律、Peterson方法及应力场强度方法进行有效统一,同时有限元方法的发展进一步支持了该理论.目前,该方法在高周疲劳研究中取得了较好的效果,但对低周疲劳寿命预测的有效性仍需进一步的验证.

References

[1]  1 魏安安, 纪熙, 李艳斌等. 带缺口构件疲劳寿命的研究进展. 机械工程材料, 2011, 35(3):1-4
[2]  2 张成成, 姚卫星. 典型缺口件疲劳寿命分析方法. 航空动力学 报, 2013, 28(6):1223-1230
[3]  3 夏开全, 姚卫星. 关于疲劳缺口系数. 机械强度, 1994, 16(4):19-26
[4]  7 Verreman Y, Limodin N. Fatigue notch factor and short crack propagation. Engineering Fracture Mechanics, 2008,75(6): 1320-1335
[5]  8 Siebel E, Stieler M. Significance of dissimilar stress distributions for cycling loading. VDI Z, 1955, 97(5): 121-126
[6]  9 Qylafku G, Azari Z, Kadi N, et al. Application of a new model proposal for fatigue life prediction on notches and key-seats. International Journal of Fatigue, 1999, 21(8):753-760
[7]  10 Qylafku G, Kadi N, Azari Z, et al. Fatigue of specimens subjected to combined loading:role of hydrostatic pressure. International Journal of Fatigue, 2001, 23(8): 689-701
[8]  11 Morel F, Morel A, Nadot Y. Comparison between defects and micro-notches in multiaxial fatigue-the size effect and the gradient effect. International Journal of Fatigue, 2009,31(2): 263-275
[9]  12 Susmel L, Atzori B, Meneghetti G, et al. Notch and mean stress effect in fatigue as phenomena of elasto-plastic inherent multiaxiality. Engineering Fracture Mechanics, 2011,78(8): 1628-1643
[10]  13 Yao W X. Stress field intensity approach for predicting fatigue life. International Journal of Fatigue, 1993, 15(3):243-246
[11]  14 尚德广, 王大康, 李明等. 随机疲劳寿命预测的局部应力应变场 强法. 机械工程学报, 2002, 38(1): 67-70
[12]  15 陈健, 崔海涛, 温卫东. 基于应力场强法的缺口件疲劳寿命预测 方法研究. 长春理工大学学报(自然科学版), 2010, 33(4): 87-91
[13]  16 Carpinteri A, Cornetti P, Pugno N, et al. A finite fracture mechanics approach to structures with sharp V-notches. Engineering Fracture Mechanics, 2008, 75(7): 1736-1752
[14]  17 Taylor D. Geometrical effects in fatigue:a unifying theoretical approach. International Journal of Fatigue, 1999,21(5): 413-420
[15]  18 杨新岐, 张艳新, 霍立兴等. 焊接接头疲劳评定局部法研究进展. 机械强度, 2003, 25(6): 675-681
[16]  19 Taylor D, Bologna P, Bel Knani K. Prediction of fatigue failure location on a component using a critical distance method. International Journal of Fatigue, 2000, 22(9):735-742
[17]  20 Taylor D. The theory of critical distances. Engineering Fracture Mechanics, 2008, 75(7): 1696-1705
[18]  21 Taylor D. Applications of the theory of critical distances in failure analysis. Engineering Failure Analysis, 2011, 18(2):543-549
[19]  22 Susmel L. The theory of critical distances:a review of its applications in fatigue. Engineering Fracture Mechanics,2008, 75(7): 1706-1724
[20]  23 H?rkeg?rd G, Halleraker G. Assessment of methods for prediction of notch and size effects at the fatigue limit based on test data by B?hm and Magin. International Journal of Fatigue, 2010, 32(10): 1701-1709
[21]  24 Atzori B, Meneghetti G, Susmel L. Material fatigue properties for assessing mechanical components weakened by notches and defects. Fatigue Fracture Engineering Material and Structure, 2005, 28(1-2): 83-97
[22]  25 Carpinteri A, Spagnoli A, Vantadori S, et al. A multiaxial criterion for notch high-cycle fatigue using a critical-point method. Engineering Fracture Mechanics, 2008, 75(7):1864-1874
[23]  26 Firat M. Cyclic plasticity modeling and finite element analyzes of a circumferentially notched round bar under combined axial and torsion loadings. Materials and Design,2012, 34(2): 842-852
[24]  27 王效贵, 高增梁, 邱宝象等. 16MnR 缺口件疲劳启裂寿命的理 论分析与试验研究. 核动力工程, 2010, 31(5): 32-38
[25]  28 Brighenti R, Carpinteri A. A notch multiaxial-fatigue approach based on damage mechanics. International Journal of Fatigue, 2012, 39: 122-133
[26]  29 Sakane M, Zhang SD, Kim T. Notch effect on multiaxial low cycle fatigue. International Journal of Fatigue, 2011,33(8): 959-959
[27]  4 Ostash OP, Panasyuk VV. Fatigue process zone at notches. International Journal of Fatigue, 2001, 23(7): 627-636
[28]  5 胡本润, 刘建中, 陈剑峰. 疲劳缺口系数Kf 与理论应力集中系 数Kt 之间的关系. 材料工程, 2007, 7:70-73
[29]  6 Fatemi A, Zeng Z, Plaseied A. Fatigue behavior and life prediction of notched specimens made of QT and forged microalloyed steels. International Journal of Fatigue, 2004,26(6): 663-672

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133