全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

变分多尺度方法在一维力学模型中的应用

DOI: 10.6052/1000-0879-13-281, PP. 288-293

Keywords: 变分多尺度方法,细观位移,宏观有限元模型,后验误差

Full-Text   Cite this paper   Add to My Lib

Abstract:

将变分多尺度方法应用于一维缆索模型,导出受力缆索的宏观有限元模型并求得细观位移解析解,总结出变分多尺度方法应用于具体模型的关键点和缺陷.假定刚度为常值,数值模拟一定边界和受力下的缆索,得到宏观和细观位移.将细观与宏观位移叠加,相比于精确位移得出细观位移可视为常规有限元模型的后验误差.变分多尺度方法在一维力学模型中的成功应用,推进了其实用性,为其在更多力学及工程问题中的运用和发展提供了参考.

References

[1]  1 Bensoussan A, Lions JL, Papanicolaou G. Asymptotic Analysis for Periodic Structures. Amsterdam: North-Holland, 1978
[2]  2 Hormung U, Ed. Homogenization and Porous Media. Berlin: Springer-Verlag, 1997
[3]  3 Miehe C, Dettmar J, Zah D. Homogenization and two-scale simulations of granular materials for different microstructural constraints. International Journal for Numerical Methods in Engineering, 2010, 83(8-9): 1206-1236
[4]  8 Hughes TJR. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering,1995, 127(1-4): 387-401
[5]  9 Hughes TJR, Stewart J. A space-time formulation for multiscale phenomena. Journal of Computational and Applied Mathematics, 1996, 74(1-2): 217-229
[6]  10 Hughes TJR, Feijoo CR, Luca M, et al. The variational multiscale method-a paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 1998, 166(1-2): 3-24
[7]  11 Thompson EG. An Introduction to the Finite Element Method: Theory, Programming, and Applications. Natick: John Wiley &Sons, Inc., 2005
[8]  12 Brezzi F, Franca LP, Hughes TJR, et al. b=fg. Computer Methods in Applied Mechanics and Engineering,1997, 145(3-4): 329-339
[9]  13 Franca LP, Russo A. Unlocking with residual-free bubbles. Computer Methods in Applied Mechanics and Engineering,1997, 142(3-4): 361-364
[10]  14 Franca LP, Russo A. Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles. Applied Mathematics Letters, 1996, 9(5): 83-88
[11]  15 Franca LP, Russo A. Mass lumping emanating from residual-free bubbles. Computer Methods in Applied Mechanics and Engineering, 1997, 142(3-4): 353-360
[12]  16 Russo A. Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Computer Methods inApplied Mechanics and Engineering,1996, 132(3-4): 335-343
[13]  17 Russo A. A posteriori error estimates via bubble functions. Mathematical Models and Methods in Applied Sciences,1996, 6(1): 33-41
[14]  4 Martin NC, Trumel H, Dragon A. Morphology-based homogenization for viscoelastic particulate composites: part I: viscoelasticity sole. European Journal of MechanicsA/Solids, 2003, 22 (1): 89-106
[15]  5 Cushman JH, Bennethum LS, Hu BS. A primer on upscaling tools for porous media. Advances on Water Resources,2002, 25(8-12): 1043-1067
[16]  6 Babuska I, Tempone R, Zouraris GE. Galerkin finite element methods: their performance and their relation to mixed methods. SIAM Journal on Numerical Analysis,1983, 20(3):510-536
[17]  7 Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1): 169-189

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133