全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高超声速技术项目“Hyper-X”气动研究方法学

DOI: 10.6052/1000-0879-13-133

Keywords: 方法学,气动,高超声速技术,超燃推进,Hyper-X

Full-Text   Cite this paper   Add to My Lib

Abstract:

高超声速技术项目“Hyper-X”不仅实现了在大气中的高超声速飞行,验证了超声速燃烧与一体化设计的核心原理,而且促进了世界范围高超声速技术的持续发展.分析了Hyper-X在高超声速基础技术和应用技术领域的研究过程,特别是理论计算、地面试验和飞行试验相结合系统解决所面临的主要空气动力学问题的研究特色,尝试在气动研究方法学上归纳整理Hyper-X研究思路和方法,指出所具有的分解与集成、递进与过渡、知识与准则、验证与确认等方法学精髓.还介绍了该方法学在解决吸气式高超声速飞行器主要气动问题方面的一些应用.

References

[1]  1 Engelund WC, Holland SD, Cockrell CE. Aerodynamic database development for the Hyper-X airframe integrated scramjet propulsion experiments. AIAA 2000-4006, 2000
[2]  2 Glass DE, Merski NR,Glass CE. Airframe research and technology for hypersonic airbreathing vehicles. NASA TM2002-211752, 2002
[3]  3 Ferleman SM, McClinton CR, Rock KE, et al. Hyper-X Mach 7 scramjet design, ground test and flight results. AIAA 2005-3322, 2005
[4]  4 Cockrell CE, Engelund WC. Integrated aeropropulsive computational fluid dynamics methodology for the HyperX flight experiment. Journal of Spacecraft & Rockets, 2001,38 (6): 837-843
[5]  5 范晓樯,贾地,潘沙等. 源项法模拟高超声速飞行器内外一体化流场. 推进技术,2005, 26(5):385-388
[6]  6 贺元元,乐嘉陵,倪鸿礼. 吸气式高超声速机体/推进一体化飞行器数值和试验研究. 实验流体力学,2007, 21(2): 29-34
[7]  7 Van Wie DM, Kwok FT,Walsh RF. Starting characteristics of supersonic inlets. AIAA 96-2914, 1996
[8]  8 梁德旺,袁化成,张晓嘉. 影响高超声速进气道起动能力的因素分析. 宇航学报,2006, 27(4):714-719
[9]  9 Berry SA, Daryabeigi K,Wurster K. Boundary layer transition on X-43A. AIAA 2008-3736, 2008
[10]  10 Lau KY. Hypersonic boundary-layer transition: application to high speed vehicle design. Journal of Spacecraft & Rockets, 2008, 45 (2): 176-183
[11]  11 Lau KY. Hypersonic boundary layer transition-application to high speed vehicle design. AIAA 2007-0310, 2007
[12]  12 Ferlemann SM, McClinton CR, Rock KE, et al. HyperX Mach 7 scramjet design, ground test and flight results. AIAA 2005-3322, 2005
[13]  13 Berry SA, Nowak RJ, Horvath TJ. Boundary layer control hypersonic airbreathing vehicles. AIAA 2004-2246, 2004
[14]  14 Berry SA, Michael DiFulvio, Kowalkowski MK, et al. Forced boundary-layer transition on X-43 (Hyper-X) in NASA LaRC 20-inch Mach 6 air tunnel. NASA TM 2000-210316, 2000
[15]  15 Berry SA, Michael DiFulvio, Kowalkowski MK, et al. Forced boundary-layer transition on X-43 (Hyper-X) in NASA LaRC 31-inch Mach 10 air tunnel. NASA TM 2000-210315, 2000
[16]  16 Schneider SP. Hypersonic boundary-layer transition on blunt bodies with roughness. AIAA 2008-0501, 2008
[17]  17 Berry SA, Nowak RJ, Horwath TJ, et al. Boundary layer control for hypersonic airbreathing vehicles. AIAA 2004-2245, 2004
[18]  18 Candler G, Johnson H, Alba C, et al. Analysis of modal growth on the leeward centerplane of the X-51 vehicle. AFRL-RB-WP-TM 2010-3001, 2010
[19]  19 Cockrell CE, Engelund WC, Bittner RD, et al. Integrated aero-propulsive CFD methodology for the Hyper-X flight experiment. AIAA 2000-4010, 2000
[20]  20 Buning PG, Wong TC, Dilley AD, et al. Prediction of the Hyper-X stage separation aerodynamics using CFD. AIAA2000-4009, 2000
[21]  21 Frendi A. On the CFD support for the Hyper-X aerodynamic database. AIAA 99-0885, 1999
[22]  22 Parikh P, Engelund W, Sasan A, et al. Evaluation of a CFD method for aerodynamic database development using the Hyper-X stack configuration. AIAA 2004-5385, 2004
[23]  23 Bakos R. Current hypersonic research in the USA. RTOEN-AVT-150-10, 2008
[24]  24 Marshall LA, Corpening GP, Sherrill R. A chief engineer's view of the NASA's X-43A scramjet flight test. AIAA 2005-3332, 2005
[25]  25 Engelund WC. Hyper-X/X-43A aerodynamics: results from the Mach 7 and Mach 10 scramjet flight test. AIAA2005-3405, 2005
[26]  26 Marshall LA, Bahm C, Corpening GP. Overview with results and lessons learned of the X-43A Mach 10 flight. AIAA 2005-3336, 2005
[27]  27 Voland RT, Huebner LD, McClinton CR. X-43A hypersonic vehicle technology development. Acta Astronautica, 2006,59 (1-5): 181-197

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133