全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大型流态化多相流数值模拟的关键科学问题——曳力模型的理论分析

DOI: 10.6052/1000-0879-13-042, PP. 269-277

Keywords: 非均匀多相流动,数值模拟,曳力模型,流态化系统能量分析方法,颗粒团

Full-Text   Cite this paper   Add to My Lib

Abstract:

描述相间相互作用的曳力模型是决定流态化模拟成败的关键科学问题,核心是如何表征稠密非均匀流动中曳力的一般规律.首先综述了现有曳力模型的发展现状和优缺点,然后讨论了流态化系统能量分析方法(energyminimizationmultiscalemethod,EMMS),以及在此基础上建立的曳力模型及其发展历程,重点分析了EMMS理论在代表非均匀流动特征的颗粒团尺寸、内部固含率等关键参数上的缺陷、文中的修正方法和实验检验结果.最后,讨论了曳力模型的发展方向即普适性问题.

References

[1]  1 Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal, 1990,36(4): 523-538
[2]  2 Wen CY, Yu YH. Mechanics of fluidization. AIChE Symp,1966, 62(1): 100-111
[3]  3 Ergun S. Fluid flow through packed columns. Chemical Engineering Progress, 1952, 48(1): 89-94
[4]  4 Gidaspow D. Hydrodynamics of fluidization and heat transfer: supercomputer modeling. Appl Mech Rev, 1986, 1(39):1-22
[5]  5 Di Felice R. The voidage function for fluid particle interaction systems. International Journal of Multiphase Flow,1994, 20(1): 153-159
[6]  6 Syamlal M, Obrien TJ. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow, 1988, 14(5): 473-481
[7]  7 Li JH, Mooson K. Particle-Fluid Two-Phase Flow, the Energy Minimization Multi-Scale Method. Beijing: Metallurgical Industry Press, 1994
[8]  8 Sundaresan S. Modeling the hydrodynamics of multiphase flow reactors: current status and challenges. AIChE Journal, 2000, 46(6): 1102-1105
[9]  9 Wang W, Li TC. Simulation of the clustering phenomenon in a fast fluidized bed: the importance of drag correlation. Chinese Journal of Chemical Engineering, 2004, 12(3):335-341
[10]  10 Benyahia S. On the effect of sub-grid drag closures. Industrial & Engineering Chemistry Research, 2010, 49(11):5122-5131
[11]  11 Benyahia S, Sundaresan S. Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models. Powder Technology, 2012, 220: 2-6
[12]  12 Andrews MJ, O'Rourke PJ. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. International Journal of Multiphase Flow, 1996, 22(2): 379-402
[13]  13 Snider DM. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. Journal of Computational Physics, 2001, 170 (2): 523-549
[14]  14 Snider DM. Three fundamental granular flow experiments and CPFD predictions. Powder Technology, 2007 176: 36-46
[15]  15 Chen C, Werther J, Heinrich S, et al. CPFD simulation of circulating fluidized bed risers. Powder Technology, 2013,235: 238-247
[16]  16 Li F, Song F, Benyahia S, et al. MP-PIC simulation of CFB riser with EMMS-based drag model. Chemical Engineering Science, 2012, 82(12): 104-113
[17]  17 Zhang DZ, Vanderheyden WB. The effects of mesoscopic structures on the macroscopic momentum equations for two-phase flows. International Journal of Multiphase Flow, 2002, 28(5): 805-822
[18]  18 Ye M,Wang J, van der Hoef MA, et al. Two-fluid modeling of Geldart A particles in gas-fluidized beds. Particuology,2008, 6(6): 540-548
[19]  27 Gao J, Chang J, Xu C, et al. CFD simulation of gas solid flow in FCC strippers. Chemical Engineering Science, 2008, 63(7): 1827-1841
[20]  28 Manyele SV, Parssinen, JH, Zhu JX. Characterizing particle aggregates in a high-density and high-flux CFB riser. Chemical Engineering Journal, 2002, 88(1): 151-161
[21]  29 Zhang Y, Lu C. Numerical study of the pressure fluctuation in a bubbling fluidized bed of FCC catalyst. The 3rd Asian Particle Technology Symposium, Beijing, 2007
[22]  30 Harris AT, Davidson JF, Thorpe RB. The prediction of particle cluster properties in the near wall region of a vertical riser. Powder Technology, 2002, 127(2): 128-143
[23]  31 Zou B, Li H, Xia Y, et al. Cluster structure in a circulating fluidized bed. Powder Technology, 1994, 78(2): 173-178
[24]  32 漆小波,曾涛,黄卫星. 循环流化床提升管中团聚物颗粒浓度的实验研究. 四川大学学报(工程科学版), 2005, 5: 46-50
[25]  33 Guenther C, Breault R. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed. Powder Technology, 2007, 173(3): 163-173
[26]  34 Yang TY, Leu LP. Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed. AIChE Journal, 2009, 55(3): 612-629
[27]  35 Wang J, Ge W, Li JH. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chemical Engineering Science, 2008, 63(6): 1553-1571
[28]  36 Ge W, Wang W, Dong W, et al. Meso-scale structure: a challenge of computational fluid dynamics for circulating fluidized bed risers. The 9th International Conference on Circulating Fluidized Beds: TuTech Innovation GmbH, Hamburg, 2008
[29]  37 Ye M, van der Hoef MA, Kuipers JAM. The effects of particle and gas properties on the fluidization of Geldart A particles. Chemical Engineering Science, 2005, 60(16):4567-4580
[30]  38 Di Renzo A, Di Maio FP. Homogeneous and bubbling fluidization regimes in DEM CFD simulations: hydrodynamic stability of gas and liquid fluidized beds. Chemical Engineering Science, 2007, 62(1): 116-130
[31]  39 Agrawal K, Loezos PN, Syamlal M, et al. The role of mesoscale structures in rapid gas-solid flows. J Fluid Mech,2001, 445(1): 151-185
[32]  40 Yesim Igci, Arthur T, Andrews IV, et al. Filtered twofluid models for fluidized gas-particle suspensions. AIChE Journal, 2008, 54(6): 1431-1448
[33]  41 Yesim Igci, Sundaresan S. Constitutive models for filtered two-fluid models of fluidized gas-particle flows. Industrial & Engineering Chemistry Research, 2011, 50(23): 13190-13201
[34]  42 Arthur T, Andrews IV, Loezos PN, et al. Coarse-grid simulation of gas-particle flows in vertical risers. Ind Eng Chem Res, 2005, 44(16): 6022-6037
[35]  43 Yesim Igci, Sundaresan S. Verification of filtered two-fluid models for gas-particle flows in risers. AIChE Journal,2011, 57(10): 2691-2707
[36]  44 Yesim Igci, Sreekanth P, Sofiane B, et al. Validation studies on filtered model equations for gas-particle flows in Risers. Industrial & Engineering Chemistry Research, 2012, 51(4):2094-2103
[37]  45 Wang W, Lu B, Zhang N, et al. A review of multiscale CFD for gas-solid CFB modeling. International Journal of Multiphase Flow, 2010, 36(2): 109-118
[38]  46 Lu B, Wang W, Li JH. Searching for a mesh-independent sub-grid model for CFD simulation of gas solid riser flows. Chemical Engineering Science, 2009, 64(15): 3437-3447
[39]  47 Wang X, Liu K, You CF. Drag force model corrections based on non-uniform particle distributions in multiparticle systems. Powder Technology, 2011, 209: 112-118
[40]  48 Li JH, Zhang J, Ge W, et al. Multi-scale methodology for complex systems. Chemical Engineering Science, 2004,59(8): 1687-1700
[41]  49 Zhang Y, Ge W, Li JH. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling. Chemical Engineering Science, 2005, 60(11): 3091-3099
[42]  50 Zhang Y, Ge W, Wang XW, et al. Validation of EMMSbased drag model using lattice Boltzmann simulations on GPUs. Particuology, 2011, 9(4): 365-373
[43]  51 Li JH, Kwauk M. Exploring complex systems in chemical engineeringthe multi-scale methodology. Chemical Engineering Science, 2003, 58(3-6): 521-535
[44]  52 Li JH, Ge W, Zhang J, et al. Multi-scale compromise and multi-level correlation in complex systems. Chemical Engineering Research & Design, 2005, 83(A6): 574-582
[45]  53 Ge W, Chen FG, Gao J, et al. Analytical multiscale method for multi-phase complex systems in process engineering-bridging reductionism and holism. Chemical Engineering Science, 2007, 62(13): 3346-3377
[46]  54 Li JH, Ge W, Wang W, et al. Focusing on the meso-scales of multi-scale phenomena-in search for a new paradigm in chemical engineering. Particuology, 2010, 8(6): 634-639
[47]  55 Lu B,Wang W, Li JH, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chemical Engineering Science, 2007, 62(18):5487-5494
[48]  56 Hartge EU, Ratschow L, Wischnewski R, et al. CFDsimulation of a circulating fluidized bed riser. Particuology,2009, 7(4): 283-296
[49]  57 Armstrong LM, Luo KH, Gu S. Two-dimensional and three-dimensional computational studies of hydrodynamics in the transition from bubbling to circulating fluidised bed. Chemical Engineering Journal, 2010, 160(1): 239-248
[50]  58 李静海, 欧阳洁, 高士秋等. 颗粒流体复杂系统的多尺度模拟. 北京: 科学出版社, 2005
[51]  59 Ge W, Wang W, Yang N. Meso-scale oriented simulation towards virtual process engineering (VPE)-The EMMS paradigm. Chemical Engineering Science, 2011, 66(19):4426-4458
[52]  60 肖海涛. 欧拉气固曳力模型的理论研究和数值模拟. [硕士论文]. 北京: 清华大学, 2001
[53]  61 Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coeffcient. Chemical Engineering Journal, 2003, 9(1-3): 71-80
[54]  62 Wang W, Li JH. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-extension of the EMMS model to the sub-grid level. Chemical Engineering Science, 2007,62(1-2): 208-231
[55]  63 Wang W, Lu B, Li JH. Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chemical Engineering Science, 2007, 62 (3): 814-819
[56]  65李飞, 陈程, 王锦生等. 稠密气固两相QL-EMMS 曳力模型及改进. 工程热物理学报, 2011(1): 75-79
[57]  66 Chen C, Li F, Qi HY. Modeling of the flue gas desulfurization in a CFB riser using the Eulerian approach with heterogeneous drag coeffcient. Chemical Engineering Science, 2012, 69(1): 659-668
[58]  67 Naren PR, Lali AM, Ranade VV. Evaluating EMMS model for simulating high solid flux risers. Chemical Engineering Research & Design, 2007, 85(A8): 1188-1202
[59]  19 Das Sharma S, Pugsley T, Delatour R. Three-dimensional CFD model of the deaeration rate of FCC particles. AIChE Journal, 2006, 52(7): 2391-2400
[60]  20 Mckeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technology, 2003, 129(1): 39-152
[61]  21 O'Brien TJ, Syamlal M. Particle cluster effects in the numerical simulation of a circulating fluidized bed. In: Avidan AA. Circulating. Fluidized Beds IV. New York: AIChE, 1993. 430-435
[62]  22 Cruz E, Steward FR, Pugsley T. New closure models for CFD modeling of high-density circulating fluidized beds. Powder Technology, 2006, 169(3): 115-122
[63]  23 Qi Haiying. Euler/Euler Simulation der Fluiddynamik Zirkulierender Wirbelschichten, Dissertation of RWTH Aachen. Germany: Press Mainz, 1997
[64]  24 Arastoopour H, Gidaspow D. Analysis of IGT pneumatic conveying data and fast fluidization using a thermohydrodynamic model. Powder Technology, 1979, 22: 77-87
[65]  25 Gu WK. Diameters of catalyst clusters in FCC. AIChE Symp, 1999, 95 (321): 42-47
[66]  26 Gu WK, Chen JC. A model for solid concentration in circulating fluidized beds. In: Fan LX, Knowlton T. Fluidization IX. New York: Engineering Foundation, 1998. 501-508
[67]  64 王雪瑶,吴学智,姜凡等. 高密度CFB 提升管内气固两相曳力修正模型及冷态实验验证. 工程热物理学报, 2009, 30(2):237-240

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133