全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

耳蜗力学研究进展

DOI: 10.6052/1000-0879-13-477, PP. 685-715

Keywords: 耳蜗基底膜,行波理论,听觉主动反馈,耳蜗放大器,耳蜗力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

耳蜗力学是听觉科学和生理声学研究的核心话题,同时也是一个极具代表性的生物力学话题.深入总结和揭示耳蜗力学特性能够推动相关问题的深入研究和促进心理声学的发展与应用.该文分宏观力学和微观力学两部分进行综述,然后结合近几年的研究动态,总结耳蜗力学的发展趋势和应用前景.表明耳蜗作为一个杰出的频率选择和高灵敏度的声信号感应器官,可以对20~20000Hz这样跨度达千倍的频率做出精确响应,且刺激信号可以放大4000倍以上.

References

[1]  2 Békésy. Experiments in Hearing. New York: McGraw,1960
[2]  3 Tobias R, Hudspeth AJ. Dual contribution to amplifica-tion in the mammalian inner ear. Physical Review Letters,2010, 105(11): 118102
[3]  4 Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiological Review, 2001, 81(3): 1305-1352
[4]  5 Ashmore Jonathan. Cochlear outer hair cell motility. Physiological Review, 2008, 88: 173-210
[5]  6 杨琳. 镫骨、耳蜗及Corti 器的建模与生物力学研究. [博士论 文]. 上海:复旦大学, 2009
[6]  7 Zwicker E, Fastl H. Psychoacoustics: Facts and Models. Berlin: Springer-Verlag, 1999
[7]  8 Lamb S Jessica, Chadwick S Richard. Dual traveling waves in an inner ear model with two degrees of freedom. Physical Review Letters, 2011, 107(8): 088101
[8]  9 Karen B Avraham. Sounds from the cochlea. Nature, 1997,390(11): 559-560
[9]  10 Adjemian BC. A three-chamber hydroelastic model of the cochlea. [PhD Thesis]. California: University of California,1981
[10]  11 Mahmoud Hamadiche. Fluid and structure interaction in cochlea's similar geometry. In: Proceedings of the ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochan-nels, Microchannels, and Minichannels, Montreal, Canada, 2010
[11]  12 刘后广. 新型人工中耳压电振子听力补偿的理论与实验研究. [博士论文]. 上海:上海交通大学,2011
[12]  13 Andrei S Kozlov, Johannes Baumgart, Thomas Risler, et al. Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale. Nature, 2011, 474(16):376-379
[13]  14 Chan DK, Hudspeth AJ. Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro. Nature Neuroscience, 2005, 8(2): 149-155
[14]  15 杨俊, 樊昌信. 非线性耳蜗力学模型和偏移技术解法. 电子科学 学刊, 1992, 14(6): 567-573
[15]  16 Jiang Xiaoai, Grosh Karl. Including physiologically based nonlinearity in a cochlear model. Journal of Vibration and Acoustics-Transactions of the ASME, 2010, 132: 021003
[16]  17 Zheng J, Shen W, He DZZ, et al. Prestin is the motor pro-tein of cochlear outer hair cells. Nature, 2000, 405(6783):149-155
[17]  18 Szalai R, Tsaneva-Atanasova K, Homer ME, et al. Nonlin-ear models of development, amplification and compression in the mammalian cochlea. Philosophical Transactions of the Royal Society A, 2011, 369: 4183-4204
[18]  19 Allen JB. Cochlear micromechanics-a physical model of transduction. The Journal of the Acoustical Society of America, 1980, 68(6): 1660-1670
[19]  20 Zwislocki JJ, Kletsky EJ. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science, 1979,204(4393): 639-641
[20]  21 Rhode WS. Observations of the vibration of the basilar membrane in squirrel monkeys using M?ssbauer technique. The Journal of the Acoustical Society of America, 1971,49(4): 1218-1231
[21]  22 Russell IJ, Sellick PM, Tuning properties of cochlear hair cells. Nature, 1977, 267(5614): 858-860
[22]  23 Kemp DT. Stimulated acoustic emissions from within the human auditory system. The Journal of the Acoustical So-ciety of America, 1978, 64(5): 1386-1391
[23]  24 Dallos P, Zheng J, Cheatham MA. Prestin and the cochlear amplifier. Journal of Physiological, 2006, 576(l): 37-42
[24]  25 Gold T. Hearing. The physical basis of the action of the cochlea. Proceedings of the Royal Society of London, Series B, 1948, 135(881): 492-498
[25]  26 Ren T, Gillespie PG. A mechanism for active hearing. Cur-rent Opinion in Neurobiology, 2007, 17(4): 498-503
[26]  27 中国数字科技馆:
[27]  28 Ruggero MA, Rich NC, Recio A, et al. Basilar membrane responses to tones at the base of the chinchilla cochlea. The Journal of the Acoustical Society of America, 1997, 101(4):2151-2163
[28]  29 Rhode WS, Recio A. Study of mechanical motions in the basal region of the chinchilla cochlea. The Journal of the Acoustical Society of America, 2000, 107(6): 3317-3332
[29]  30 Cooper NP. Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea. Journal of Neuroscience, 1998, 509(1): 277-288
[30]  31 Nuttall AL, Dolan DF. Steady-state sinusoidal velocity re-sponses of the basilar membrane in guinea pig. The Journal of the Acoustical Society of America, 1996, 99(3): 1556-1565
[31]  32 Dallos P. The Auditory Periphery: Biophysics and Physi-ology. New York: Academic, 1973
[32]  33 Dancer A, Franke R. Intra cochlear sound pressure mea-surements in guinea pigs. Hearing Research, 1980, 2(3-4):191-206
[33]  34 Zweig G. Basilar membrane motion. Cold Spring Harbor Symposia on Quantitative Biology, 1976, 40: 619-633
[34]  35 Cooper NP. Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea. The Journal of Physiology, 1998, 509(1): 277-288
[35]  36 Rhode WS. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer tech-nique. The Journal of the Acoustical Society of America,1971, 49(4): 1218-1231
[36]  60 Brundin L, Flock B, Flock ?. Sound induced displacement response of the guinea pig hearing organ and its relation to the cochlear potentials. Hearing Research, 1992, 58(2):175-184
[37]  61 Brundin L, Flock ?, Khanna SM, et al. The tuned dis-placement response of the hearing organ is generated by the outer hair cells. Neuroscience, 1992, 49(3): 607-616
[38]  62 Cooper NP. Two-tone suppression in cochlear mechanics. The Journal of the Acoustical Society of America, 1996,99(5): 3087-3098
[39]  63 Cai Y, Geisler CD. Suppression in auditory-nerve fibers of cats using low-side suppressors. II. Effect of spontaneous rates. Hearing Research, 1996, 96(1): 113-125
[40]  64 Patuzzi R, Sellick PM, Johnstone BM. The modulation of the sensitivity of the mammalian cochlea by low frequency tones. III. Basilar membrane motion. Hearing Research,1984, 13(1): 19-28
[41]  65 Yates GK, Winter I, Robertson D. Basilar membrane non-linearity determines auditory nerve rate-intensity functions and cochlear dynamic range. Hearing Research, 1990,45(3): 203-219
[42]  66 Evans EF, Wilson JP. Cochlear tuning properties: con-current basilar membrane and single nerve fiber measure-ments. Science, 1975, 190(4220): 1218-1221
[43]  67 Sewell WF. The effects of furosemide on the endo-cochlear potential and auditory-nerve fiber tuning curves in cats. Hearing Research, 1984, 14(3): 305-314
[44]  68 Wiederhold ML. Variations in the effects of electric stim-ulation of the crossed olivo-cochlear bundle on cat single auditory-nerve-fiber responses to tone bursts. The Journal of the Acoustical Society of America, 1970, 48(4): 966-977
[45]  69 Nuttall AL, Ren TY. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hear-ing Research, 1995, 92(1): 170-177
[46]  70 Chen Fangyi, Zha Dingjun, Fridberger Anders, et al. A differentially amplified motion in the ear for near-threshold sound detection. Nature Neuroscience, 2011, 14(6): 770-774
[47]  71 Jaramillo F, Howard J, Hudspeth AJ. Calcium Ions Pro-mote Rapid Mechanically Evoked Movements of Hair Bun-dles. New York: Springer-Verlag, 1990
[48]  72 Martin P, Hudspeth AJ. Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stim-uli. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(25): 14306-14311
[49]  73 Kim D. Active and nonlinear cochlear biomechanics and the role of outer hair cell subsystem in the mammalian au-ditory system. Hearing Research, 1986, 22(1-3): 105-114
[50]  74 姚文娟, 陈懿强, 叶志明等. 耳听力系统生物力学研究进展. 力 学与实践, 2013, 35(6): 1-10
[51]  75 Kwacz M, Marek P, Borkowski P, et al. A three-dimensional finite element model of round window mem-brane vibration before and after stapedotomy surgery. Biomechanics and Modeling in Mechanobiology, 2013,12(6): 1243-1261
[52]  76 Spector AA, Ameen M, Schmiedt RA. Modeling 3-D de-formation of outer hair cells and their production of the active force in the cochlea. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 123-135
[53]  77 Sun Q, Gan RZ, Chang KH, et al. Computer-integrated fi-nite element modeling of human middle ear. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 109-122
[54]  78 Ma Fuyin, Wu Jiuhui, Hou Haiyun. Progress in physio-logical acoustics. Journal of Mechanics in Medicine and Biology, 2013, 13(5): 1340007
[55]  79 Ma Fuyin, Wu Jiuhui, Fu Gang, et al. Aerodynamics and aeroacoustics of airflow over a human head. Journal of Mechanics in Medicine and Biology, 2014, 14(5): 1450068
[56]  80 Ma Fuyin, Wu Jiuhui, Zhang Weiquan, et al. Head-related transfer function and hearing visualization. The 21st Inter-national Congress on Sound and Vibration, Beijing, China, 2014
[57]  1 Helmholtz H. The theory of sound. Nature, 1878, 19(476):117-118
[58]  37 Recio A, Rich NC, Narayan SS, et al. Basilar-membrane responses to clicks at the base of the chinchilla cochlea. The Journal of the Acoustical Society of America, 1998, 103(4):1972-1989
[59]  38 Recio A, Narayan SS, Ruggero MA. Wiener-Kernel Analy-sis of Basilar-Membrane Responses to White Noise. Singa-pore: World Scientific, 1997
[60]  39 Johnstone JR, Alder VA, Johnstone BM, et al. Cochlear action potential threshold and single unit thresholds. The Journal of the Acoustical Society of America, 1979, 65(1):254-257
[61]  40 Zinn C, Maier H, Zenner HP, et al. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in vivo guinea-pig cochlea. Hearing Research, 2000, 142(1): 159-183
[62]  41 Khanna SM, Hao LF. Nonlinearity in the apical turn of living guinea pig cochlea. Hearing Research, 1999, 135(1):89-104
[63]  42 Cooper NP. Mid-band Sensitivity Notches in Apical Cochlear Mechanics. Singapore: World Scientific, 1997
[64]  43 Kim DO, Molnar CE. Cochlear Mechanics: Measurements and Models. New York: Raven, 1975
[65]  44 Peterson LC, Bogert BP. A dynamical theory of the cochlea. The Journal of the Acoustical Society of America,1950, 22(1): 369-381
[66]  45 Naidu RC, Mountain DC. Measurements of the stiffness map challenge, a basic tenet of cochlear theories. Hearing Research, 1998, 124(1): 124-131
[67]  46 Miller CE. Structural implications of basilar membrane compliance measurements. The Journal of the Acoustical Society of America, 1985, 77(4): 1465-1474
[68]  47 Dancer A. Experimental look at cochlear mechanics. Au-diology, 1992, 31(6): 301-312
[69]  48 Magnan P, Dancer A, Probst R, et al. Intra-cochlear acous-tic pressure measurements: transfer functions of the middle ear and cochlear mechanics. Audiology and Neuro-Otology,1999, 4(3-4): 123-128
[70]  49 Uggero MA. Systematic errors in indirect estimates of basi-lar membrane travel times. The Journal of the Acoustical Society of America, 1980, 67(2): 707-710
[71]  50 Amitava Biswas. A novel analysis of the mechanicals of cochlear, the inner ear. 2003 ASME International Mechan-ical Engineering Congress, Washington, DC, USA, 2003
[72]  51 Allen JB. Two-dimensional cochlear fluid model: new re-sults. The Journal of the Acoustical Society of America,1977, 61(1): 110-119
[73]  52 Stephen T Neely. Finite difference solution of a two-dimensional mathematical model of the cochlea. The Jour-nal of the Acoustical Society of America, 1981, 69(5): 1386-1393
[74]  53 Mammano F, Nobili R. Biophysics of the cochlea: linear approximation. The Journal of the Acoustical Society of America, 1993, 93(6): 3320-3332
[75]  54 Larry A Tabera, Charles R Steele. Cochlear model includ-ing three-dimensional fluid and four modes of partition flex-ibility. The Journal of the Acoustical Society of America,1981, 70(2): 426-436
[76]  55 Paul J Kolston. Comparing in vitro, in situ, and in vivo experimental data in a three-dimensional model of mam-malian cochlear mechanics. Proceedings of the National Academy of Sciences of the United States of America, 1999,96(7): 3676-3681
[77]  56 Taber LA, Steele CR. Cochlear model including three-dimensional fluid and four modes of partition flexibility. The Journal of the Acoustical Society of America, 1981,70(2): 426-436
[78]  57 Recio A, Rich NC, Narayan SS, et al. Basilar-membrane responses to clicks at the base of the chinchilla cochlea. The Journal of the Acoustical Society of America, 1998, 103(4):1972-1989
[79]  58 Cooper NP, Rhode WS. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea. Journal of Neurophysiology, 1997,78(1): 261-270
[80]  59 International team for ear research. Cellular vibration and motility in the organ of corti. Acta Otolaryngol , Supple-mentum, 1989, 467: 1-279

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133