全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复杂结构动力模型降阶方法研究

DOI: 10.6052/1000-0879-14-110, PP. 171-181

Keywords: 复杂结构,动力分析,模型降阶

Full-Text   Cite this paper   Add to My Lib

Abstract:

复杂结构动力模型降阶是结构动力分析中的一项关键技术.总结了复杂结构模型动力分析中常用到的多种模型降阶方法,分析和比较了各种方法的特点,并对今后的可研究方向提出了一些建议.

References

[1]  35 Lin RM, Lim MK. Structural sensitivity analysis via reduced-order analytical model. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4): 345-359.
[2]  36 Kuhar EJ, Stahle CV. Dynamic transformation method for modal Synthesis. AIAA Journal, 1974, 12(5): 672-678.
[3]  37 Paz M. Dynamic condensation. AIAA Journal, 1984,22(5): 724-727
[4]  38 Paz M. Modified dynamic condensation method. Journal of Structural Engineering, 1989, 115(1): 234-238
[5]  39 Rothe K, Voss H. Improving condensation methods for eigenvalue problems via reyleigh functions. Computer Methods in Applied Mechanics and Engineering, 1994,111(1-2): 169-183
[6]  40 Kim KO. Dynamic condensation for structural redesign. AIAA Journal, 1984, 23(11): 1830-1832
[7]  41 张德文,魏阜旋. 模型修正与破损诊断. 北京: 科学出版社,1999
[8]  42 瞿祖清,华宏星,傅志方. 一种有限元模型坐标动力缩聚技术. 振动与冲击, 1998, 17(3): 15-18,87
[9]  43 瞿祖清. 结构动力缩聚技术:理论与应用. [博士论文]. 上海:上 海交通大学, 1998
[10]  44 Kane K, Torby BJ. The extended modal reduction method applied to rotor dynamic problems. Journal of Vibration and Acoustics, 1991, 113(11): 79-84
[11]  45 Rivera MA, Singh MP, Suarez LE. Dynamic condensation approach for non-classically damped structures. AIAA Journal, 1999, 37(5): 564-571
[12]  46 Qu ZQ, Selvam RP. Efficient method for dynamic condensation of nonclassically damped vibration systems. AIAA Journal, 2002, 40(2): 368-375
[13]  47 Qu ZQ, Jung Y, Selvam RP. Model condensation for nonclassically damped systems-part I: static condensation. Mechanical Systems and Signal Processing, 2003, 17(5):1003-1016
[14]  48 Qu ZQ, Selvam RP, Jung Y. Model condensation for nonclassically damped systems-part II: iterative schemes for dynamic condensation. Mechanical Systems and Signal Processing, 2003, 17(5): 1017-1032
[15]  49 Qu ZQ, Selvam RP. Insight into the dynamic condensation technique of non-classically damped models. Journal of Sound and Vibration, 2004, 272(3-5): 581-606
[16]  50 O'Callahan JC. A procedure for an improved reduced system (IRS) model. The 7th International Model Analysis Conference. Las Vegas, 1989
[17]  51 Kidder RL. Reduction of structural frequency equations. AIAA Journal, 1973, 11(6): 892
[18]  52 Friswell MI, Garvey SD, Penny JET. Model reduction using dynamic and Iterated IRS techniques. Journal of Sound and Vibration, 1995, 186(2): 311-323
[19]  53 Friswell MI, Garvey SD, Penny JET. The convergence of the iterated IRS Methods. Journal of Sound and Vibration, 1998, 211(1): 123-132
[20]  54 Kim KO, Choi YJ. Energy method for selection of degrees of freedom in Condensation. AIAA Journal, 2000, 38(7):1253-1259
[21]  55 Cho M, Kim H. Element-based node selection method for reduction of eigenvalue problems. AIAA Journal, 2004,42(8): 1677-1684
[22]  56 Kim H, Cho M. Two-level scheme for selection of primary degrees of freedom and semi-analytic sensitivity based on the reduced system. Computer Methods in Applied Mechanics and Engineering, 2006, 195(33-36): 4244-4268
[23]  57 Kim H, Cho M. Sub-domain optimization of multi-domain structure constructed by reduced system based on the primary degrees of freedom. Finite Elements in Analysis and Design, 2007, 43(11-12): 912-930
[24]  58 Ong JH. Improved automatic masters for eigenvalue economization. Finite Elements in Analysis and Design, 1987,3(2): 149-160
[25]  59 Bouhaddi N, Fillod R. A method for selecting master DOF in dynamic substructuring using the Guyan condensation method. Computers and Structures, 1992, 45(5-6): 941-946
[26]  60 Wilson EL, Yuan MW, Dickens JM. Dynamic analysis by direct superposition of Ritz vectors. Earthquake Engineering and Structural Dynamics, 1982, 10(6): 813-821
[27]  61 王勖成. 有限单元法. 北京: 清华大学出版社, 2004
[28]  62 Nour-Omid B, Clough RW. Dynamic analysis of structures using lanczos coordinates. Earthquake Engineering and Structural Dynamics, 1984, 12(4): 565-577
[29]  63 Gu JM, Ma ZD, Hulbert GM. A new load-dependent Ritz vector method for structural dynamics analysis: quasistatic Ritz vectors. Finite Elements in Analysis and Design, 2000, 36(3-4): 261-278
[30]  64 林家浩,曲乃泗,孙焕纯. 计算结构动力学. 北京: 高等教育出版社, 1990
[31]  65 Hurty WC. Dynamic analysis of structural systems using component Modes. AIAA Journal, 1965, 3(4): 678-685
[32]  66 Craig JRR, Bampton MCC. Coupling of substructures for dynamic Analyses. AIAA Journal, 1968, 6(7): 1313-1319
[33]  67 Goldman RL. Vibration analysis by dynamic partitioning. AIAA Journal, 1969, 7(6): 1152-1154
[34]  68 Hou SN. Review of modal synthesis techniques and a new approach. Shock and Vibration Bulletin, 1969, 40(4): 25-39.
[35]  69 MacNeal RH. A hybrid method for component mode synthesis. Computers and Structures, 1971, 1(4): 582-601
[36]  70 Leung AYT. A simple dymamic substructure method. Earthquake Engineering and Structural Dynamics, 1988,16(6): 827-837
[37]  71 Suarez LE, Singh MP. Improved fixed interface method for modal Synthesis. AIAA Journal, 1992, 30(12): 2952-2958
[38]  72 Shyu WH, Ma ZD, Hulbert GM. A new component mode synthesis method: quasi-static mode compensation. Finite Elements in Analysis and Design, 1997, 24(4): 271-281
[39]  73 Craig JRR. Substructure methods in vibration. Journal of Vibration and Acoustics, 1995, 117(Special): 207-213
[40]  74 王永岩. 动态子结构方法理论及应用. 北京: 科学出版社, 1999
[41]  75 向树红,邱吉宝,王大钧. 模态分析与动态子结构方法新进展. 力学进展, 2004, 34(3): 289-303
[42]  76 邱吉宝,王建民,谭志勇. 运载火箭结构动力分析的一些新技术第一部分:模态综合技术. 导弹与航天运载技术, 2001, (2):29-34
[43]  77 邱吉宝,王建民. 运载火箭模态试验仿真技术研究新进展. 宇航学报, 2007, 28(3): 516-521
[44]  78 杜飞平,谭永华,陈建华等. 航天器子结构模态综合法研究现状及进展. 火箭推进, 2010, 36(3): 39-44
[45]  79 王建军,李其汉. 航空发动机失谐叶盘振动减缩模型与应用. 北京: 国防工业出版社, 2009
[46]  80 许明财. ANSYS 模态综合法技术. CAD/CAM 与制造业信息化, 2005, (2): 90-91
[47]  81 张亚辉,林家浩. 结构动力学基础. 大连: 大连理工大学出版社,2007
[48]  82 郑淑飞,丁桦. 基于变形修正的局部刚体化动力模型简化方法. 力学与实践, 2008, 30(6): 31-34
[49]  83 刘斌,丁桦,时忠民. 基于柔度修正的局部刚体化结构动力模型 简化方法. 工程力学, 2007, 24(10): 25-31
[50]  84 王文胜, 徐胜利, 程耿东. 基于简化模型的结构动力特性优化. 工程力学, 2012, 28(12): 45-50,159
[51]  85 彭海军, 王文胜, 程耿东. 基于物理降阶模型的桁架结构振动主动控制. 工程力学, 2013, 30(12): 1-7
[52]  86 邓佳东,程耿东. 基于局部插值的结构动力模型降阶方法. 力学学报, 2012, 44(2): 111-119
[53]  87 王文胜, 程耿东, 李取浩. 基于梁平截面假设的复杂细长结构动力模型简化方法. 计算力学学报, 2012, 29(3): 295-299,332
[54]  88 Wang WS, Cheng GD, Li QH. Fast dynamic performance optimization of complicated beam-type structures based on two new reduced physical models. Engineering Optimization, 2013, 45(7): 835-850
[55]  89 Erasmo C, Marco P, Alberto V. Advanced beam formulations for free-vibration analysis of conventional and joined wings. American Society of Civil Engineers, 2012, 25(2):282-293
[56]  90 Moore BC. Principal component analysis in linear systems controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 1981, 26(1): 17-32
[57]  91 Pernebo L, Silverman LM. Model reduction via balanced state space representations. IEEE Transactions on Automatic Control, 1982, 27 (2): 382-387
[58]  92 Kokotovic PV, O'Malley JRE, Sannuti P. Singular perturbations and order reduction in control theory: an overview. Automatica, 1976, 12(2): 123-132
[59]  93 Saksena VR, O'Reilly J, Kokotovic PV. Singular perturbations and time-scale methods in control theory: survey 1976-1983. Automatica, 1984, 20(3): 273-293
[60]  94 Wilson DA. Model reduction for multivariable systems. International Journal of Control, 1974, 20(1): 57-64
[61]  95 Skelton RE, Yousuff A. Component cost analysis of large scale systems. International Journal of Control, 1983,37(2): 285-304
[62]  96 Freund RW. Krylov-subspace methods for reduced-order modeling in circuit simulation. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 395-421
[63]  97 Bai ZJ. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Applied Numerical Mathematics, 2002, 43(1-2): 9-44
[64]  98 Freund RW. Model reduction methods based on Krylov subspaces. Acta Numerica, 2003, 12: 267-319
[65]  1 Box GEP, Wilson KB. On the experimental attainment of optimum conditions (with discussion). Journal of Royal Statistical Society, 1951, B13: 1-45
[66]  2 Hill WJ, Hunter WG. A review of response surface methodology: a literature survey. Technometrics, 1966, 8(4): 571-590
[67]  3 Myers RH, Khuri AI, Carter JWH. Response surface methodologly: 1966-1968. Technometrics, 1989, 31(2):137-157
[68]  4 Khuri AI, Cornell JA. Response Surfaces (2nd edn). New York: Marcel Dekker INC, 1996
[69]  5 隋允康,白海波. 基于中心点精确响应面法的板壳结构优化. 机械设计, 2005, 22(11): 10-12
[70]  6 江涛,陈建军,张建国等. 基于区间模型的响应面法. 机械设计与研究, 2005, 21(6): 12-16
[71]  7 窦毅芳,刘飞,张为华. 响应面建模方法的比较分析. 工程设计学报, 2007, 14(5): 359-363
[72]  8 潘雷,谷良贤,阎代维. 改进响应面法(IRSM) 及其近似性能研究. 自然科学进展, 2009, 19(2): 222-226
[73]  9 隋允康, 宇惠平. 响应面方法的改进及其对工程优化的应用. 北京: 科学出版社, 2011
[74]  10 Knill DL, Giunta AA, Baker CA, et al. Multidisciplinary HSCT configuration design using response surface approximations of super soniceuler aerodynamics. AIAA Paper 1998-0905
[75]  11 Giunta AA. Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. [PhD Thesis]. Blacksburg:Virginia Polytechnic Institute and State University, 1997
[76]  12 Roux WJ, Stander N, Haftka RT. Response surface approximations for structural optimization. International Journal for Numerical Methods in Engineering, 1998, 42(3): 517-534
[77]  13 Kim C, Wang S, Choi KK. Efficient response surface modeling by using moving least-squares method and sensitivity. AIAA Journal, 2005, 43(11): 2404-2411
[78]  14 Yang RJ, Wang BP, Wang N, et al. Metamodeling development for vehicle frontal impact simulation. Journal of Mechanical Design, 2005, 127(5): 1014-1020
[79]  15 阳志光,陈敏,隋允康. 响应面法在圆柱壳结构优化设计中的应用. 弹箭与制导学报, 2003, 27(3): 127-130
[80]  16 王海亮,林忠钦,金先龙. 基于响应面模型的薄壁构件耐撞性优化设计: 应用力学学报, 2003, 20(3): 61-65
[81]  17 张勇,李光耀,钟志华. 基于移动最小二乘响应面方法的整车轻量化设计优化. 机械工程学报, 2008, 44(11): 192-196
[82]  18 Kim C, Choi KK. Reliability-based design optimization using response surface method with prediction interval estimation. ASME Journal of Mechanical Design, 2008,130(12): 121401-1-12
[83]  19 Goel T, Vaidyanathan R, Haftka RT, et al. Response surface approximation of pareto optimal front in multiobjective optimization. Computer Methods in Applied Mathematics and Engineering, 2007, 196(4-6): 879-893
[84]  20 Gogu C, Haftka RT, Bapanapalli SK, et al. Dimensionality reduction approach for response surface approximations: application to thermal design. AIAA Journal, 2009,47(7): 1700-1708
[85]  21 高月华. 基于Kriging 代理模型的优化设计方法及其在注塑成型中的应用. [博士论文]. 大连:大连理工大学, 2009
[86]  22 Lophaven SN, Nielsen HB, Sondergaard J. DACE-A Matlab Kriging toolbox. Technical Report IMN-TR-2002-12,2002
[87]  23 Simpson TW, Mauery TM, Korte JJ, et al. Comparison of response surface and Kriging models for multidisciplinary design optimization. AIAA Paper 1998-4755
[88]  24 高月华,张崎,王希诚. 基于Kriging 模型的汽轮机基础动力优化设计. 计算力学学报, 2008, 25(5): 610-615
[89]  25 Joseph VR, Hung Y, Agus S. Blind Kriging: a new method for developing Metamodels. Journal of Mechanical Design,2008, 130(3): 031102
[90]  26 高月华, 王希诚. 基于Kriging 代理模型的多点加点序列优化方法. 工程力学, 2012, 29(4): 90-95
[91]  27 Zhao L, Choi KK, Lee I. Metamodeling method using dynamic Kriging for design optimization. AIAA Journal,2011, 49(9): 2034-2046
[92]  28 Matthew Z. Neural Networks in Atificial Intelligence. New York: Ellis Horwood Limited, 1990
[93]  29 Varadarajan S, Chen W, Pelka C. Robust concept exploration of propulsion systems with enhanced model approximation capabilities. Engineering Optimization, 2000,32(3): 309-334
[94]  30 邓乃扬,田英杰. 数据挖掘中的新方法-支持向量机. 北京: 科学出版社, 2004
[95]  31 Cortex C, Vapnik V. Support-vector networks. Machine Learning, 1995, 20(3): 273-297
[96]  32 刘志强. 基于支持向量机的可靠度计算方法研究. [硕士论文]. 大连:大理工大学, 2008
[97]  33 Guyan RJ. Reduction of stiffness and mass matrices. AIAA Journal, 1965, 3(2): 380
[98]  34 Irons B. Structural eigenvalue problems-elimination of unwanted Variables. AIAA Journal, 1965, 3(5): 961-962

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133