[75] Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in alattice Boltzmann method. Computers & Mathematics with Applications,2009, 58(5): 965-974
[2]
[76] Sbragaglia M, Benzi R, Biferale L, et al. Generalized lattice Boltzmannmethod with multirange pseudopotential. Physical Review E,2007, 75(2): 1-23
[3]
[77] Zhang Raoyang, Chen Hudong. Lattice Boltzmann method for simulations ofliquid-vapor thermal flows. Physical Review E, 2003, 67(6): 1-6
[4]
[78] Li Zhitao, Li Gaojin, Huang Haibo, et al. Lattice Boltzmann study ofelectrohydrodynamic drop deformation with large density ratio. International Journal of Modern Physics C, 2011, 22(7): 729-744
[5]
[79] Joshi AS, Sun Y. Multiphase lattice Boltzmann method forparticle suspensions. Physical Review E, 2009, 79(6):066703_1-066703_16
[6]
[1] 郭永怀. 边界层理论讲义. 合肥: 中国科学技术大学出版社, 2008. 21-25 (Guo Yonghuai. Boundary Layer Theory Lecture Notes. Hefei: Press of University of Science and Technology of China, 2008. 21-25(in Chinese))
[3] Zhang Junfeng. Lattice Boltzmann method for microfluidics: Models and applications. Microfluidics and Nanofluidics, 2010, 10(1): 1-28
[9]
[4] 李元. 格子Boltzmann方法的应用研究. 合肥: 中国科学技术大学, 2009 (Li Yuan. The Application of Lattice Boltzmann Method. Hefei: University of Science and Technology of China, 2009 (in Chinese))
[10]
[5] Voronov Roman S, Papavassiliou Dimitrios V, Lee Lloyd L. Slip length and contact angle over hydrophobic surfaces. Chemical Physics Letters, 2007, 441(4-6): 273-276
[11]
[6] Barrat JL, Bocquet L. Large slip effect at a nonwetting fluid-solid interface. Physical Review Letters, 1999, 82(23): 4671-4674
[12]
[7] Cottin-Bizonne C, Barrat JL, Bocquet L, et al. Low-friction flows of liquid at nanopatterned interfaces. Nature materials, 2003, 2(4): 237-240
[13]
[8] Zhang Wenfei, Li Dongqing. Low speed water flow in silica nanochannel. Chemical Physics Letters, 2008, 450(4-6): 422-425
[14]
[9] Chen Shiyi, Doolen GD, Matthaeus WH. Lattice gas automata for simple and complex fluids. Journal of Statistical Physics, 1991, 64(5): 1133-1162
[15]
[10] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版社, 2008 (He Yaling, Wang Yong, Li Qing. Lattice Boltzmann Method: Theory and Applications. Beijing: Science and Technology Press, 2008 (in Chinese))
[16]
[11] Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511-524
[17]
[12] Qian YH, d' Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6): 479-484
[18]
[13] Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann simulation of nonideal fluids. Physical Review Letters, 1995, 75(5): 830-833
[19]
[14] Zheng HW, Shu C, Chew YT. A lattice Boltzmann model for multiphase flows with large density ratio. Journal of Computational Physics, 2006, 218(1): 353-371
[20]
[15] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用. 北京: 科学技术出版社, 2009 (Guo Zhaoli, Zheng Chuguang. Theory and Applications of Lattice Boltzmann Method. Beijing: Science and technology press, 2009 (in Chinese))
[21]
[16] Shan XW, Doolen G. Diffusion in a multicomponent lattice Boltzmann equation model. Physical Review E, 1996, 54(4): 3614-3620
[22]
[17] Shan XW, Chen HD. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 1994, 49(4): 2941-2948
[23]
[18] Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815-1819
[24]
[19] Sukop MC. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Springer, 2006
[25]
[20] Martys Nicos S, Chen HD. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E, 1996, 53(1): 743-750
[26]
[21] Huang HB, Thorne Jr DT, Schaap MG, et al. Proposed approximation for contact angles in shan-and-chen-type multicomponent multiphase lattice Boltzmann models. Physical Review E, 2007, 76(6): 1-6
[27]
[22] Pan CX, Hilpert M, Miller CT. Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resources Research, 2004, 40(1): 1-14
[28]
[23] Kang QJ, Zhang DX, Chen SY. Displacement of a two-dimensional immiscible droplet in a channel. Physics of Fluids, 2002, 14(9): 3203-3214
[29]
[24] Benzi R, Biferale L, Sbragaglia M, et al. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle. Physical Review E, 2006, 74(2): 021509_1-021509_14
[30]
[25] Extrand CW, Kumagai Y. An experimental study of contact angle hysteresis. Journal of Colloid and Interface Science, 1997, 191(2): 378-383
[31]
[26] Extrand CW. Contact angles and their hysteresis as a measure of liquid- solid adhesion. Langmuir, 2004, 20(10): 4017-4021
[32]
[27] Hyvaluoma J, Koponen A, Raiskinmaki P, et al. Droplets on inclined rough surfaces. The European Physical Journal E: Soft Matter and Biological Physics, 2007, 23(3): 289-293
[33]
[28] Wenzel RN. Resistance of solid surfaces to wetting by water. Industrial Engineering Chemistry, 1936, 28(8): 988-994
[34]
[29] Cassie ABD, Baxter S. Wettability of porous surfaces. Transactions of the Faraday Society, 1944, 40: 546-551
[35]
[30] Patankar NA. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 2003, 19(4): 1249-1253
[36]
[31] Marmur A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir, 2003, 19(20): 8343-8348
[37]
[32] Bico J, Marzolin C, Quéré D. Pearl drops. Europhysics Letters, 1999, 47(2): 220-226
[38]
[33] Dupuis A, Yeomans JM. Modeling droplets on superhydrophobic surfaces: Equilibrium states and transitions. Langmuir, 2005, 21(6): 2624-2629
[39]
[34] 林建忠, 包福兵, 张凯等. 微纳流动理论与应用. 北京: 科学出版社, 2010 (Lin Jianzhong, Bao Fubing, Zhang Kai, et al. Theroy and application of micro-nono flow[M]. Beijing: Science and technology press, 2010 (in Chinese))
[40]
[35] Choi CH, Westin K, Johan A, et al. Apparent slip flows in hydrophilic and hydrophobic microchannels. Physics of Fluids, 2003, 15(10): 2897-2902
[41]
[36] 王新亮, 狄勤丰, 张任良等. 超疏水表面滑移理论及其减阻应用研究进展. 力学进展, 2010, 40(3): 241-249 (Wang Xinliang, Di Qinfeng, Zhang Renliang, et al. Progress in theories of super-hydrophobic surface slipeffect and its application on drag reduction technology. Advances in Mechanics, 2010, 40(3): 241-249 (in Chinese))
[42]
[37] 狄勤丰, 顾春元, 施利毅等. 疏水性纳米SiO$_2$增注剂的降压作用机理. 钻采工艺, 2007, 30(4): 91-94 (Di Qinfeng, Gu Chunyuan, Shi Liyi, et al. Pressure drop mechanism of enhancing water injection technology with hydrophobicity nonometer SiO$_{2}$. Drilling and Production Technology, 2007, 30(4): 91-94 (in Chinese))
[43]
[38] 顾春元, 狄勤丰, 施利毅等. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076 (Gu Chunyuan, Di Qinfeng, Shi Liyi, et al. Experimental investigation of superhydrophobic properties of the surface constructed by nanoparticles. Acta Physica Sinica, 2008, 57(5): 3071-3076 (in Chinese))
[44]
[39] Lai SCS. Mimicking Nature: Physical Basis and Artificial Synthesis of the Lotus-Effect. Friesland: Universiteit Leiden, 2003
[45]
[40] Navier C. Mémoire sur les lois du mouvement des fluides. Acad Sci Inst France, 1822, 6(2): 375-394
[46]
[41] Succi S. Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Physical Review Letters, 2002, 89(6): 1-4
[47]
[42] Lajos Szalmas. Slip on curved boundaries in the lattice Boltzmann model. International Journal of Modern Physics C, 2007, 18(1): 15-24
[48]
[43] 吴承伟, 马国军. 关于流体流动的边界滑移. 中国科学: G 辑, 2004, 34(6): 681-690 (Wu Chengwei, Ma Guojun. On the border of fluid flow sliding. Science in China] ( Series G}), 2004, 34(6): 681-690 (in Chinese))
[49]
[44] Chen YY, Yi HH, Li HB. Boundary slip and surface interaction: A lattice Boltzmann simulation. Chinese Phys Lett, 2008, 25(1): 184-187
[50]
[45] Raiskinmaki P, Shakib-Manesh A, Jasberg A, et al. Lattice-Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 2002, 107(1): 143-158
[51]
[46] Zhang RL, Di QF, Wang XL, et al. Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by lattice Boltzmann method. Journal of Hydrodynamics, Ser B, 2010, 22(3): 366-372
[52]
[47] 张任良, 狄勤丰, 王新亮等. 用格子Boltzmann方法模拟壁面微结构对管流特性的影响. 计算物理, 2011, 28(2): 225-229 (Zhang Renliang, Di Qinfeng, Wang Xinliang, et al. Lattice Boltzmann flow in a micro-channel. Chinese Journal of Computational Physics, 2011, 28(2): 225-229 (in Chinese))
[53]
[48] Burton Z, Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro-and nanoelectromechanical systems. Nano Lett, 2005, 5(8): 1607-1613
[50] Tretheway DC, Meinhart CD. A generating mechanism for apparent fluid slip in hydrophobic microchannels. Physics of fluids, 2004, 16(5): 1509-1517
[56]
[51] Barrat Jean-Louis, Bocquet Lyderic. Large slip effect at a nonwettingfluid-solid interface. Physical Review Letters, 1999, 82(23): 4671-4674
[57]
[52] Cieplak M, Koplik J, Banavar JR. Boundary conditions at a fluid-solidinterface. Physical Review Letters, 2001, 86(5): 803-806
[58]
[53] Cottin-Bizonne C, Barentin C, Charlaix E, et al. Dynamics ofsimple liquids at heterogeneous surfaces: Molecular-dynamics simulationsand hydrodynamic description. The European Physical Journal E,2004, 15(4): 427-438
[59]
[54] Kunert C, Harting J. Simulation of fluid flow in hydrophobic roughmicrochannels. International Journal of Computational Fluid Dynamics,2008, 22(7): 475-480
[60]
[55] Kunert C, Harting J. Roughness induced boundary slip in microchannelflows. Physical Review Letters, 2007, 99(17): 1-4
[61]
[56] Kunert C, Harting J. On the effect of surfactant adsorption andviscosity change on apparent slip in hydrophobic microchannels. Progressin Computational Fluid Dynamics, 2008, 8(1): 197-205
[62]
[57] 龚帅, 郭照立.横向振荡圆柱绕流的格子Boltzmann方法模拟. 力学学报,2011, 43(5): 809-818(Gong Shuai, Guo Zhaoli. Lattice Boltzmann simulation of flow over a transversely oscillatingcircular cylinder. Chinese Journal of Theoretical and AppliedMechanics, 2011, 43(5): 809-818 (in Chinese))
[63]
[58] 龚帅, 郭照立. 流向振荡圆柱绕流的格子Boltzmann方法模拟. 力学学报, 2011, 43(1): 11-17(Gong Shuai, Guo Zhaoli. Lattice Boltzmann simulation of the flow around a circular cylinderoscillating streamwisely. Chinese Journal of Theoretical andApplied Mechanics, 2011, 43(1): 11-17 (in Chinese))
[64]
[59] 周济福. 渗流力学研究的现状和发展趋势. 力学与实践, 2007, 29(3): 1-6(Zhou Jifu. Mechanics of porous media flow: status and perspectives. Mechanics in Engineering, 2007, 29(3): 1-6 (in Chinese))
[65]
[60] 赵秀才, 姚军, 陶军等. 基于模拟退火算法的数字岩心建模方法.高校应用数学学报(A辑), 2007, 22(2): 127-133 (Zhao Xiucai, Yao Jun, Tao Jun, etal. A method of constructing digital core by simulated annealingalgorithm. Applied Mathematics A Journal of Chinese Universities, Ser A, 2007, 22(2): 127-133 (in Chinese))
[66]
[61] 赵秀才, 姚军, 衣艳静等. 基于择多算子的随机搜索法建立数字岩心的新技术. 岩土力学, 2008, 29(5): 1339-1350 (Zhao Xiucai, Yao Jun, Yi Yanjing, et al.A new method of constructing digital core utilizing stochastic searchalgorithm based on majority operator. Rock and Soil Mechanics, 2008,29(5): 1339-1350 (in Chinese))
[67]
[62] 赵秀才, 姚军. 数字岩心建模及其准确性评价. 西安石油大学学报:自然科学版, 2007, 22(2): 16-20 (Zhao Xiucai, Yao Jun. Construction ofdigital core and evaluation of its quality. Journal of Xi'an ShiyouUniversity] ( Natural Science), 2007, 22(2): 16-20 (in Chinese))
[68]
[63] 钱吉裕, 李强, 宣益民等. 确定多孔介质流动参数的格子Boltzmann方法.工程热物理学报, 2004, 25(4): 655-657 (Qian Jiyu, Li Qiang, Xuan Yimin, et al.Application of lattice-Boltzmann scheme on determining flow parameters ofporous media. Journal of Engineering Thermophysics, 2004, 25(4):655-657 (in Chinese))
[69]
[64] 许友生. 用晶格Boltzmann方法研究多孔介质内流体的复杂动力学特征.
[70]
[博士论[博士论文]. 上海:华东师范大学, 2006 (Xu Yousheng. Lattice Boltzmann method for complexfluids in porous media. [PhD Thesis]. Shanghai: East China Normal University, 2006(in Chinese))
[71]
[65] 许友生. 一种新的模拟渗流运动的数值方法. 物理学报, 2003, 52(3):626-629 (Xu Yousheng. A new numerical method for simulating fluid flow throughporous media. Acta Physica Sinica, 2003, 52(3): 626-629 (in Chinese))
[72]
[66] 阎广武, 胡守信. 用lattice Boltzmann方法确定多孔介质的渗透率. 计算物理,1997, 14(1): 63-67 (Yan Guangwu, Hu Shouxin. Determining permeabilities ofporous media by lattice Boltzmann method. Chinese Journal ofComputational Physics, 1997, 14(1): 63-67 (in Chinese))
[73]
[67] Sukop MC, Or D. Lattice Boltzmann method for modelingliquid-vapor interface configurations in porous media. Water ResourcesResearch, 2004, 40(1): 1-11
[74]
[68] Hyv?luoma J, Raiskinm?ki P, J?sberg A, et al. Simulation of liquidpenetration in paper. Physical Review E, 2006, 73(3): 1-8
[75]
[69] Angelopoulos AD, Paunov VN, Burganos VN, et al. Lattice Boltzmannsimulation of nonideal vapor-liquid flow in porous media. Physical ReviewE, 1998, 57(3): 3237-3245
[76]
[70] 任玲, 陈建国. 单组分多相系统驱替过程的格子 Boltzmann 模拟. 力学与实践,2009, 31(2): 31-34 (Ren Ling, Chen jianguo. Single component multiphasedisplacement with lattice Boltzmann bodels. Mechanics in Engineering,2009, 31(2): 31-34 (in Chinese))
[77]
[71] Huang HB, Li ZT, Liu SS, et al. Shan-and-chen-typemultiphase lattice Boltzmann study of viscous coupling effects fortwo-phase flow in porous media. International Journal forNumerical Methods in Fluids, 2009, 61(3): 341-354
[78]
[72] Peng Y, Laura S. Equations of state in a lattice Boltzmannmodel. Physics of Fluids, 2006, 18(4): 042101-042111
[79]
[73] Kuzmin A, Mohamad AA. Multirange multi-relaxation time shan-chen modelwith extended equilibrium. Computers & Mathematics withApplications, 2010, 59(7): 2260-2270
[80]
[74] Shan Xiaowen. Analysis and reduction of the spurious current in a classof multiphase lattice Boltzmann models. Physical Review E,2006, 73(4): 047701_1-047701_1