全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肠道与内窥镜的生物摩擦特性研究进展

DOI: 10.6052/1000-0879-13-164

Keywords: 肠道,胶囊内窥镜,摩擦特性,微图案,医用机器人

Full-Text   Cite this paper   Add to My Lib

Abstract:

肠道是人体主要的消化吸收器官,由于其结构狭窄曲折表面结构复杂,内窥镜诊断时会产生组织损伤、胶囊滞留等并发症.由此激发起肠道与内窥镜的摩擦特性研究,该研究对解决这些并发症以及开发无损诊断内窥镜具有举足轻重的作用.本文概括介绍了内窥镜的种类,综述了胶囊式内窥镜与肠道、微机器人与肠道的摩擦问题,内容主要集中在两个方面(1)胶囊式内窥镜减摩研究,包括摩擦特性研究方法、胶囊结构与摩擦阻力的关系、摩擦机理研究、摩擦阻力预测模型建立以及内窥镜结构优化;(2)肠内微机器人实现自主行走的增摩研究,包括增大摩擦力的方法以及机理研究.最后,提出了该领域值得进一步解决的科学问题.

References

[1]  11 Wang XN, Max QH . An experimental study of resistant properties of the small intestine for an active capsule endoscope.Journal of Engineering in Medcine, 2010, 224(1):107-118
[2]  12 Kim JS, Sung IH, Kim YT, et al. Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribology Letters, 2006,22(2): 143-149
[3]  13 Kim JS, Sung IH, Kim YT, et al. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Journal of Engineering in Medicine, 2007, 221(8): 837-845
[4]  14 Woo SH, Kim TW, Choo JH. Stopping mechanism for capsule endoscope using electrical stimulus. Med Biol Eng Comput, 2010, 48(1): 97-102
[5]  15 Yoshinaka K, Takashima K, Okazaki T, et al. Experimental study to control the insertion resistance of internal medical instrument using magnetic field oscillation. Tribology International, 2007, 40(2): 339-344
[6]  16 Kim YT, Kim DE. Biotribological investigation of mutitube foot for application in medical micro-robot. In: Proceedings of the ASME/STLE International Joint Tribology Conference, San Diego, 2007
[7]  17 Lee SH, Kim YT, Yang SW, et al. An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface. Applied Materials & Interfaces, 2010,2(5): 1308-1316
[8]  18 Elisa B, Virginia P, Piero C, et al. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy. Measurement Science and Technology,2010, 21: 105802
[9]  19 Feng Y, Li WD, Li MT, et al. Structure optimization of the endoscopic robot ciliary leg based on dimensional analysis. In: Proceedings of the 2007 IEEE International Conference on Biomedical Robotics and Biomimetics, Sanya, 2007
[10]  20 Zhang YS, Wang DL, Ruan XY, et al. Control strategy for multiple capsule robots in intestine. Science China, 2011,54(11): 3098-3108
[11]  21 Zhang YS, Jiang S, Zhang X, et al. Dynamic characteristics of an intestine capsule robot with variable diameter. Chin Sci Bull, 2010, 55(17): 1813-1821
[12]  22 Zhang YS, Jiang S, Zhang X, et al. A variable diameter capsule robot based on multiple wedge effects. IEEE/ASME Trans Mechatron, 2011, 16(2): 241-254
[13]  23 张永顺,姜生元,张学文等. 肠道内可变直径胶囊机器人的动 态特性. 中国科学,2009, 54(16): 2408-2415 (Zhang Yongshun, Jiang Shengyuan, Zhang Xuewen, et al. Dynamic characteristics of an intestine capsule robot with variable diameter. Chinese Sci Bull, 2009, 54(16): 2408-2415 (in Chinese))
[14]  24 张永顺,于宏海,阮晓燕等. 新型肠道胶囊式微型机器人的运动 特性. 机械工程学报,2009,45(8):18-23 (Zhang Yongshun, Yu Honghai,Ruan Xiaoyan, et al. Kinematics characteristics of a new capsule-type micro robot in intestine. Journal of Mechanical Engineering,2009,45(8):18-23 (in Chinese))
[15]  25 Tan RJ, Liu H, Su G, et al. Experimental investigation of the small intestine's viscoelasticity for the motion of capsule robot. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, 2011
[16]  26 Zhang C,Liu H,Tan RJ,et al. Modeling of velocitydependent frictional resistanceof a capsule robot inside an intestine. Tribol Lett , 2012, 47(2): 295-301
[17]  27 Zhang C, Su G, Liu H, et al. Motion Control research of internal force-static friction capsubot in intestine. In: Proceedings of the 2011 IEEE International Conference on Complex Medical Engineering, Harbin, 2011
[18]  1 李旻. 胶囊式微机电系统的现状与发展趋势. 现代制造工程,2010,(1): 150-153 (Li Min. Status and trend of research on capsule-like MEMS. Modern Manufacturing Engineering,2010, (1): 150-153 (in Chinese))
[19]  2 刘凯欣, 高凌天. 离散元法研究的评述. 力学进展, 2003, 33(4):483-490 (Liu Kaixin, Gao Lingtian. A review on the discrete element method. Advances in Mechanics, 2003,33(4): 483-490 (in Chinese))
[20]  3 胡海燕. 半自主式结肠内窥镜机器人系统研究. [博士论文]. 哈尔滨:哈尔滨工业大学,2011 (Hu Haiyan. Research on semi-autonomous colonoscopic robot system. [PhD Thesis]. Harbin:Harbin Institute of Technology,2009 (in Chinese))
[21]  4 叶福丽,杨玉星. 无线胶囊式内窥镜的最新进展. 咸宁学院学 报,2010,30(12): 6-8(Ye Fuli, Yang Yuxing. The latest advance of wireless capsule endoscopy. Journal of Xianning University,2010,30(12): 6-8 (in Chinese))
[22]  5 李传国,颜国正, 王坤东等. 主动可控内窥镜胶囊机器人研究. 测控技术,2010,29(4): 90-96 (Li Chuanguo, Yan Guozheng, Wang Kundong, et al. Development of micro-robot for the active exploration of the gastrointestinal track. Measurement & Control Technology, 2010,29(4): 90-96 (in Chinese))
[23]  6 刘建青,黄平. 基于OV6920 体内无线窥视胶囊设计与实验 研究. 机械设计与制造,2010,6(6): 183-184 (Liu Jianqing, Huang Ping. Study on the design and experiment of wireless endoscopy in body based on OV6920.Machinery Design & Manufacture, 2010,6(6): 183-184 (in Chinese))
[24]  7 叶福丽,杨玉星. 外磁场驱动无线胶囊式内窥镜的研究. 咸宁学 院学报,2011,31(6): 6-8 (Ye Fuli, Yang Yuxing. The study of external magnetic field drive wireless capsule endoscopy. Journal of Xianning University,2011,31(6): 6-8 (in Chinese))
[25]  8 Baek NK, Sung IH , Kim DE. Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Journal of Engineering in Medicine, 2004, 218(3):193-201
[26]  9 Wang XN, Max QH , Chan YW. Physiological factors of the small intestine in design of active capsule endoscopy. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005
[27]  10 Wang XN, Max QH. Study of frictional properties of the small intestine for design of active capsule endoscope. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Shanghai, 2006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133