11 Wang XN, Max QH . An experimental study of resistant properties of the small intestine for an active capsule endoscope.Journal of Engineering in Medcine, 2010, 224(1):107-118
[2]
12 Kim JS, Sung IH, Kim YT, et al. Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribology Letters, 2006,22(2): 143-149
[3]
13 Kim JS, Sung IH, Kim YT, et al. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Journal of Engineering in Medicine, 2007, 221(8): 837-845
[4]
14 Woo SH, Kim TW, Choo JH. Stopping mechanism for capsule endoscope using electrical stimulus. Med Biol Eng Comput, 2010, 48(1): 97-102
[5]
15 Yoshinaka K, Takashima K, Okazaki T, et al. Experimental study to control the insertion resistance of internal medical instrument using magnetic field oscillation. Tribology International, 2007, 40(2): 339-344
[6]
16 Kim YT, Kim DE. Biotribological investigation of mutitube foot for application in medical micro-robot. In: Proceedings of the ASME/STLE International Joint Tribology Conference, San Diego, 2007
[7]
17 Lee SH, Kim YT, Yang SW, et al. An optimal micropatterned end-effecter for enhancing frictional force on large intestinal surface. Applied Materials & Interfaces, 2010,2(5): 1308-1316
[8]
18 Elisa B, Virginia P, Piero C, et al. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy. Measurement Science and Technology,2010, 21: 105802
[9]
19 Feng Y, Li WD, Li MT, et al. Structure optimization of the endoscopic robot ciliary leg based on dimensional analysis. In: Proceedings of the 2007 IEEE International Conference on Biomedical Robotics and Biomimetics, Sanya, 2007
[10]
20 Zhang YS, Wang DL, Ruan XY, et al. Control strategy for multiple capsule robots in intestine. Science China, 2011,54(11): 3098-3108
[11]
21 Zhang YS, Jiang S, Zhang X, et al. Dynamic characteristics of an intestine capsule robot with variable diameter. Chin Sci Bull, 2010, 55(17): 1813-1821
[12]
22 Zhang YS, Jiang S, Zhang X, et al. A variable diameter capsule robot based on multiple wedge effects. IEEE/ASME Trans Mechatron, 2011, 16(2): 241-254
[13]
23 张永顺,姜生元,张学文等. 肠道内可变直径胶囊机器人的动 态特性. 中国科学,2009, 54(16): 2408-2415 (Zhang Yongshun, Jiang Shengyuan, Zhang Xuewen, et al. Dynamic characteristics of an intestine capsule robot with variable diameter. Chinese Sci Bull, 2009, 54(16): 2408-2415 (in Chinese))
[14]
24 张永顺,于宏海,阮晓燕等. 新型肠道胶囊式微型机器人的运动 特性. 机械工程学报,2009,45(8):18-23 (Zhang Yongshun, Yu Honghai,Ruan Xiaoyan, et al. Kinematics characteristics of a new capsule-type micro robot in intestine. Journal of Mechanical Engineering,2009,45(8):18-23 (in Chinese))
[15]
25 Tan RJ, Liu H, Su G, et al. Experimental investigation of the small intestine's viscoelasticity for the motion of capsule robot. In: Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, 2011
[16]
26 Zhang C,Liu H,Tan RJ,et al. Modeling of velocitydependent frictional resistanceof a capsule robot inside an intestine. Tribol Lett , 2012, 47(2): 295-301
[17]
27 Zhang C, Su G, Liu H, et al. Motion Control research of internal force-static friction capsubot in intestine. In: Proceedings of the 2011 IEEE International Conference on Complex Medical Engineering, Harbin, 2011
[18]
1 李旻. 胶囊式微机电系统的现状与发展趋势. 现代制造工程,2010,(1): 150-153 (Li Min. Status and trend of research on capsule-like MEMS. Modern Manufacturing Engineering,2010, (1): 150-153 (in Chinese))
[19]
2 刘凯欣, 高凌天. 离散元法研究的评述. 力学进展, 2003, 33(4):483-490 (Liu Kaixin, Gao Lingtian. A review on the discrete element method. Advances in Mechanics, 2003,33(4): 483-490 (in Chinese))
[20]
3 胡海燕. 半自主式结肠内窥镜机器人系统研究. [博士论文]. 哈尔滨:哈尔滨工业大学,2011 (Hu Haiyan. Research on semi-autonomous colonoscopic robot system. [PhD Thesis]. Harbin:Harbin Institute of Technology,2009 (in Chinese))
[21]
4 叶福丽,杨玉星. 无线胶囊式内窥镜的最新进展. 咸宁学院学 报,2010,30(12): 6-8(Ye Fuli, Yang Yuxing. The latest advance of wireless capsule endoscopy. Journal of Xianning University,2010,30(12): 6-8 (in Chinese))
[22]
5 李传国,颜国正, 王坤东等. 主动可控内窥镜胶囊机器人研究. 测控技术,2010,29(4): 90-96 (Li Chuanguo, Yan Guozheng, Wang Kundong, et al. Development of micro-robot for the active exploration of the gastrointestinal track. Measurement & Control Technology, 2010,29(4): 90-96 (in Chinese))
[23]
6 刘建青,黄平. 基于OV6920 体内无线窥视胶囊设计与实验 研究. 机械设计与制造,2010,6(6): 183-184 (Liu Jianqing, Huang Ping. Study on the design and experiment of wireless endoscopy in body based on OV6920.Machinery Design & Manufacture, 2010,6(6): 183-184 (in Chinese))
[24]
7 叶福丽,杨玉星. 外磁场驱动无线胶囊式内窥镜的研究. 咸宁学 院学报,2011,31(6): 6-8 (Ye Fuli, Yang Yuxing. The study of external magnetic field drive wireless capsule endoscopy. Journal of Xianning University,2011,31(6): 6-8 (in Chinese))
[25]
8 Baek NK, Sung IH , Kim DE. Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Journal of Engineering in Medicine, 2004, 218(3):193-201
[26]
9 Wang XN, Max QH , Chan YW. Physiological factors of the small intestine in design of active capsule endoscopy. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, 2005
[27]
10 Wang XN, Max QH. Study of frictional properties of the small intestine for design of active capsule endoscope. In: Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Shanghai, 2006