全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微纳米空间弯曲诱导的反常驱动力——从泡利的魔鬼谈起

DOI: 10.6052/1000-0879-14-023, PP. 137-146

Keywords: 微纳米尺度,弯曲空间,曲率和曲率梯度,反常驱动力

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了高度卷曲的微纳米物质空间诱发的反常驱动力,指出构成反常驱动力的基本要素有两个一个是空间的弯曲程度,即曲率,另一个是空间弯曲的不均匀程度,即曲率的梯度.

References

[1]  1 殷雅俊. 曲面物理和力学. 力学与实践, 2011, 33(6): 1-8 (Yin Yajun. Physics and mechanics on curved surfaces. Mechanics in Engineering, 2011, 33(6): 1-8 (in Chinese))
[2]  2 殷雅俊. 曲面物理和力学:最佳基本微分算子对. 力学与实践, 2013, 35(1): 1-7 (Yin Yajun. Physics and mechanics on curved surfaces: the most optimal pairs of fundamental differential operators. Mechanics in Engineering, 2013, 35(1): 1-7 (in Chinese))
[3]  3 Yin YJ, Wu JY. Symmetrical fundamental tensors, differential operators, and integral theorems in differential geometry. Tsinghua Science & Technology, 2008, 13(2): 121-126.
[4]  4 Rustom A, Saffrich R, Markovic I, et al. Nanotubular highways for intercellular organelle transport. Science, 2004,303(5660): 1007-1010
[5]  5 Sherer MM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends in Cell Biology, 2008, 18(9): 414-420
[6]  6 Daniel M Davis. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biology, 2008, 10 (2): 211-219
[7]  7 Baumgart T, Hess ST, Webb W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature, 2003, 425(6960): 821-824
[8]  8 Yin Y, Chen Y, Ni D, et al. Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. Journal of Biomechanics, 2005, 38(7):1433-1440
[9]  9 Yin Y, Yin J, Lffu C. Equilibrium theory in 2D Riemann manifold for heterogeneous biomembranes with arbitrary variational modes. Journal of Geometry and Physics, 2008,58(1): 122-132
[10]  10 Yin Y, Yin J, Ni D. General mathematical frame for open or closed biomembranes: equilibrium theory and geometrically constraint equation. Journal of Mathematical Biology, 2005, 51(4): 403-413
[11]  11 武际可. 力学史. 重庆: 重庆大学出版社, 1999
[12]  12 Yin Yajun, Chen Chao, Lffu Cunjing, et al. The shape gradient and classical gradient of curvatures: the driving forces on micro/nano curved surfaces. Appl Math Mech, 2011,32(5): 533-550
[13]  13 陈超. 水在碳纳米曲面上的湿润和滑移性质的研究. [硕士论文]. 北京:清华大学, 2010 (Chen Chao. Study on the wetting and slippy property of water on carbon nano surface. [Master Thesis]. Beijing: Tsinghua University, 2010 (in Chinese))
[14]  14 吕存景. 微纳米光滑表面上液滴润湿性的力学研究. [博士论文]. 北京:清华大学, 2011 (Lffu Cunjing. Mechanical study on wetting behaviors of water droplet on nano/micro structured smooth surface. [PhD Thesis]. Beijing: Tsinghua University, 2011 (in Chinese))
[15]  15 吴继业. 生物膜自由能及曲率梯度诱发的驱动力. [博士论文]. 北京:清华大学, 2012 (Wu Jiye. Biomembrane free energy and the driving forces induced by curvature gradients. [PhD Thesis]. Beijing: Tsinghua University, 2012 (in Chinese))
[16]  16 Wu Jiye, Yin Yajun, Wang Xugui, et al. Interaction potential between micro/nano curved surface and a particle located inside the surface (I): driving forces induced by curvatures. Science China Physics, Mechanics & Astronomy,2012, 55(6): 1066-1076
[17]  17 Wu Jiye, Yin Yajun, Huang Kun, et al. Interaction potential between micro/nano curved surface and a particle located inside the surface (II): numerical experiment and equipotential surfaces. Science China Physics, Mechanics & Astronomy, 2012, 55(6): 1077-1082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133