全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压电材料动态裂纹问题的奇异积分方程法

DOI: 10.6052/1000-0879-13-488, PP. 433-436

Keywords: 压电材料,裂纹,奇异积分方程,广义动应力强度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用广义Betti-Rayleigh互易公式给出了二维压电材料非渗透裂纹问题的一般解和奇异积分方程,其中未知函数为裂纹上的位移间断和电势间断的导数.在理论分析的基础上,使用高斯-切比雪夫求积公式及Lubich卷积积分方法建立了问题的数值求解方法,并给出典型算例的广义动应力强度因子随时间变化的规律.

References

[1]  1 Bagdasarian GY, Hasanian DJ. Magnetoelastic interactionbetween a soft ferromagnetic elastic half-plane with a crackand a constant magnetic field. International Journal ofSolids and Structures, 2000, 37(38): 5371-5383
[2]  2 Liang W, Shen YP, Zhao M. Magnetoelastic formulation ofsoft ferromagnetic elastic problems with collinear cracks:energy density fracture criterion. Theoretical and AppliedFracture Mechanics, 2000, 34(1): 49-60
[3]  3 Wang BL, Mai YW. Crack tip field in piezoelectric/piezo-magnetic media. European Journal of Mechanics A-Solids, 2003, 22(4): 591-602
[4]  4 Tian WY, Gabbert U. Multiple crack interaction problemin magnetoelectroelastic solids. European Journal of Me-chanics A: Solids, 2004, 23(4): 599-614
[5]  5 Niraula OP, Wang BL. Thermal stress analysis in magneto-electro-thermoelasticity with a penny-shaped crack underuniform heat flow. Journal of thermal Stresses, 2006, 29(5):423-437
[6]  6 Zhu BJ, Qin TY. Application of hypersingular integralequation method to three-dimensional crack in electromag-netothermoelastic multiphase composites. InternationalJournal of Solids and Structures, 2007, 44(18-19): 5994-6012
[7]  7 Zhu BJ, Qin TY. 3D modeling of crack growth in electro-magneto-thermo-elastic coupled viscoplastic multiphasecomposites. Applied Mathematical Modelling, 2009, 33(2):1014-1041
[8]  8 马静娴, 尚婕, 范天佑. 某些瞬态载荷下的动态应力强度因子的计算. 北京工业学院学报, 1988, 8(4): 24-31
[9]  9 Zhang CH. Transient elastodynamic antiplane crack anal-ysis of anisotropic solids. International Journal of Solidsand Structures, 2000, 37(42): 6107-6130
[10]  10 Feng WJ, Li YS, Xu ZH. Transient response of an inter-ficial crack between dissimilar magnetoelectroelastic layersunder magnetoelectromechanical impact loadings: mode-Iproblem. International Journal of Solids and Structures, 2009, 46(18-19): 3346-3356
[11]  11 Wang CY, Zhang CH. 3-D and dynamic Green's functionsand time-domain BIEs for piezoelectric solids. EngineeringAnalysis with Boundary Elements, 2005, 29(5): 454-465
[12]  12 Rojas-Diaz R, Saez A, Garcia-Sanchez F, et al. Time-harmonic Green's functions for anisotropic magneto-electroelasticity. International Journal of Solids andStructures, 2008, 45(1): 144-158.
[13]  13 Lubich C. Convolution quadrature revisited. BIT Numer-ical Mathematics, 2004, 44(3): 503-514
[14]  14 Garcia GF, Zhang CH, Sladek J. 2D transient dynamiccrack analysis in piezoelectric solids by BEM. Computa-tional Materials Science, 2007, 39(1): 179-186

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133