全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非牛顿流体流动的格子Boltzmann方法研究进展

DOI: 10.6052/1000-0879-14-168, PP. 383-395

Keywords: 格子玻尔兹曼方法,广义牛顿流体,黏弹性流体,分布函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

格子玻尔兹曼方法(latticeBoltzmannmethod,LBM)能够直接计算局部剪切速率并可以达到二次精度,因此在非牛顿流动数值模拟中展现出一定优势。尽管已证实LBM对于非牛顿流动的适用性,但是LBM需要通过即时调节BGK(Bhatnagar-Gross-Krook)碰撞项中的松弛时间来实时反映黏度改变,当松弛时间接近1/2时,迭代会出现数值不稳定现象。该文对LBM在非牛顿流体研究中的进展进行了总结,介绍了增加数值稳定性的方法并对结果的精度进行了比较,在此基础上对LBM在非牛顿研究中的进一步发展进行了展望。

References

[1]  1 Pan C, Luo LS, Miller CT.An evaluation of latticeBoltzmann schemes for porous medium flow simulation.Computers & Fluids, 2006, 35(8):898-909
[2]  2 任玲, 陈建国.单组分多相系统驱替过程的格子Boltzmann 模拟.力学与实践, 2009, 31(2):31-34
[3]  3 张任良, 狄勤丰, 王新亮等.基于Shan-Chen 模型的格子Boltz-mann 方法在微流动模拟研究中的应用, 2012, 34(2):10-18
[4]  4 Bhatnagar P, Gross EP, Krook MK.A model for collisionprocesses in gases.Physical Review, 1954, 94(3):511-525
[5]  5 Qian YH, d'Humieres D, Lalleman P.Lattice BGK mod-els for Navier-Stokes equation.Europhysics Letters, 1992, 17(6):479-484
[6]  6 He X, Shan X, Doolen GD.Discrete Boltzmann equationmodel for nonideal gases.Physical Review E, 1998, 57(1):R13-R16
[7]  8 He XY, Luo LS.Lattice Boltzmann model for the in-compressible Navier-Stokes equation.Journal of StatisticalPhysic, 1997, 88(3):927-944
[8]  10 Wang CH, Ho RH.A lattice Boltzmann approach for thenon-Newtonian effect in the blood flow.Computers andMathematics with Applications, 2011, 62(1):75-86
[9]  28 Kehrwald D.Lattice Boltzmann simulation of shear-thinning fluids.Journal of Statistical Physics, 2005, 121(1):223-237
[10]  29 Mendu SS, Das PK.Flow of power-law fluids in a cavitydriven by the motion of two facing lids-Asimulation by lat-tice Boltzmann method. Journal of Non-Newtonian FluidMechanics, 2012, 175 (5):10-24
[11]  30 Buick JM.Lattice Boltzmann simulation of power-law fluidflow in the mixing section of a single-screw extruder.Chemical Engineering Science, 2009, 64(1):52-58
[12]  31 Tang GH, Ye PX, Tao WQ.Pressure-driven and electroos-motic non-Newtonian flows through microporous mediavia lattice Boltzmann method.Journal of Non-NewtonianFluid Mechanics, 2010, 165(21):1536-1542
[13]  32 Tang GH.Non-Newtonian flow in microporous structuresunder the electroviscous effect.Journal of Non-NewtonianFluid Mechanics, 2011, 166(14):875-881
[14]  33 Masilamani K, Ganguly S, Feichtinger C, et al.Hybrid lat-tice Boltzmann and finite-difference simulation of electroos-motic flow in a microchannel.Fluid Dynamics Research, 2011, 43(2):025501
[15]  34 Derksen JJ.Solid particle mobility in agitated Binghamliquids.Industrial and Engineering Chemistry Research, 2009, 48(4):2266-2274
[16]  35 Derksen JJ, Prashant.Simulations of complex flow ofthixotropic liquids.Journal of Non-Newtonian Fluid Me-chanics, 2009, 160(2):65-75
[17]  36 Bernsdorf J, Wang D.Non-Newtonian blood flow simula-tion in cerebral aneurysms.Computers & Mathematics Ap-plications, 2009, 58(5): 1024-1029
[18]  37 Ashrafizaadeh M, Bakhshaei H.A comparison of non-Newtonian models for lattice Boltzmann blood simu-lations.Computers & Mathematics Applications, 2009, 58(5):1045-1054
[19]  38 Svec O, Skocek J, Stang H, et al.Free surface flow of a sus-pension of rigid particles in a non-Newtonian fluid:a lat-tice Boltzmann approach.Journal of Non-Newtonian FluidMechanics, 2012, 179-180(7):32-42
[20]  39 Dupin MM, Halliday I, Care CM, et al.Lattice Boltzmannmodelling of blood celldynamics.International Journal ofComputational Fluid Dynamics, 2008, 22(7):481-492
[21]  40 Crowl LM, Fogelson AL.Computational model of wholeblood exhibiting lateral platelet motioninduced by redblood cells.International Journal for Numerical Methodsin Biomedical Engneering, 2010, 26(3):471-487
[22]  41 Marenduzzo D, Orlandini E, Cates ME, et al.LatticeBoltzmann simulations of spontaneous flow in active liq-uid crystals:the role of boundary conditions.Journal ofNon-Newtonian Fluid Mechanics, 2008, 149(1):56-62
[23]  42 Vikhansky A.Construction of lattice-Boltzmann schemesfor non-Newtonian and two-phase flows.The CanadianJournal of Chemical Engineering, 2012, 90(5):1081-1091
[24]  43 王沁, 姚令侃, 陈春光.LBM 在非牛顿流体研究中的应用.四川大学学报(自然科学版), 2002, 29(2):214-218
[25]  44 Inamuro T.A lattice kinetic scheme for incompressible vis-cous flows with heat transfer.Philosophical Transactions ofthe Royal Society of London A, 2002, 360(4):477-484
[26]  45 Yoshino M, Hotta Y, Hirozane T, et al.A numericalmethod for incompressible non-Newtonian fluid flowsbased on the lattice Boltzmann method.Journal of Non-Newtonian Fluid Mechanics, 2007, 147(1):69-78
[27]  46 Vikhansky A.Lattice Boltzmann method for yield-stressliquids.Journal of Non-Newtonian Fluid Mechanics, 2008, 155(3):95-100
[28]  47 Guo Z, Zheng C, Shi B.Discrete lattice effects on the forc-ing term in the lattice Boltzmann method.Physical ReviewE, 2002, 65(4):1-6
[29]  48 Tang GH, Wang SB, Ye PX, et al.Bingham fluid simu-lation with the incompressible lattice Boltzmann model.Journal of Non-Newtonian Fluid Mechanics, 2011, 166(1):145-151
[30]  49 Giraud L, d'Humieres D, Lallemand P.A lattice Boltz-mann method for Jeffreys viscoelastic fluid.EurophysicsLetters, 1998, 42(6):625-630
[31]  50 Wagner AJ, Giraud L, Scott CE.Simulation of a cuspedbubble rising in a viscoelastic fluid with a new numeri-cal method.Computer Physics Communications, 2000, 129(1):227-232
[32]  51 Lallemand P, d'Humieres D, Luo LS, et al.Theory of thelattice Boltzmann method:three-dimensional model for lin-ear viscoelastic fluids.Physical Review E, 2003, 67(2):021203, 1-19
[33]  52 Ispolatov I, Grant M.Lattice Boltzmann method for vis-coelastic fluids.Physical Review E, 2002, 65(5):056704, 1-4
[34]  56 Guo Z, Shi B, Zheng C.A coupled lattice BGK model forthe Boussinesq equations.International Journal for Nu-merical Methods in Fluids, 2002, 39(4):325-342
[35]  57 Su J, Ouyang J, Wang XD, et al.Lattice Boltzmannmethod for the simulation of viscoelastic fluid flows overa large range of Weissenberg numbers.Journal of Non-Newtonian Fluid Mechanics, 2013, 194(4):42-59
[36]  58 Su J, Ouyang J, Wang XD, et al.Lattice Boltzmannmethod coupled with the Oldroyd-B constitutive model fora viscoelastic fluid.Physical Review E, 2013, 88(5):053304, 1-13
[37]  7 Chen SY, Martinez D, Mei RW.On boundary conditionsin lattice Boltzmann methods.Physics of Fluids, 1996, 8(9):2257-2536
[38]  9 d'Humieres D.Rarefied gas dynamics:theory and simula-tions.Progress in Astronautics and Simulations. Washing-ton, DC, 1992
[39]  11 Aharonov E, Rothman DH.Non-Newtonian flow (throughporous media):a lattice Boltzmann method.GeophysicalResearch Letters, 1993, 20(8):679-682
[40]  12 Ginzburg I, Steiner K.A free-surface lattice Boltzmannmethod for modelling the filling of expanding cavities byBingham fluids.Philosophical Transactions of the RoyalSociety of London A, 2002, 360(2):453-466
[41]  13 Boek ES, Chin J, Coveney PV.Lattice Boltzmann simula-tion of the flow of non-Newtonian fluids in porous media.International Journal of Modern Physics B, 2003, 17(1):99-102
[42]  14 Phillips TN.Lattice Boltzmann models for non-Newtonianflows.Journal of Applied Mathematics, 2011, 76(5):790-816
[43]  15 Gabbanelli S, Drazer G, Koplik J.Lattice Boltzmannmethod for non-Newtonian (power-law) fluids.Physical Re-view E, 2005, 72(4), 046312:1-7
[44]  16 Malaspinas O.Simulation of generalized Newtonian fluidswith the lattice Boltzmann method.International Journalof Modern Physics C, 2007, 18(12):1939-1949
[45]  17 Boyd J, Buick JM, Green S.A second-order accuratelattice Boltzmann non-Newtonian flow model.Journalof Physics A:Mathematical and General, 2006, 39(12):14241-14247
[46]  18 Ohta M, Nakamura T, Yoshida Y, et al.Lattice Boltz-mann simulations of viscoplastic fluid flows through com-plex flow channels.Journal of Non-Newtonian Fluid Me-chanics, 2011, 166(7):404-412
[47]  19 Nejat A, Abdollahi V, Vahidkhah K.Lattice Boltzmannsimulation of non-Newtonian flows past confined cylin-ders.Journal of Non-Newtonian Fluid Mechanics, 2011, 166(12):689-697
[48]  20 Zhou ZQ, Peng J.Simulation of non-Newtonian (Power-law) fluid flow past a row of square cylinders.Science ChinaPhysicss:Mechanics & Astronomy, 2011, 54 (4):703-710
[49]  21 Chai ZH, Shia BC, Guo ZL, et al.Multiple-relaxation-timelattice Boltzmann model for generalized Newtonian fluidflows.Journal of Non-Newtonian Fluid Mechanics, 2011, 166(5):332-342
[50]  22 Fallah K, Khayat M, Borghei MH, et al. Multiple-relaxation-time lattice Boltzmann simulation of non-Newtonian flows past a rotating circular cylinder.Journalof Non-Newtonian Fluid Mechanics, 2012, 177-178(1):1-14
[51]  23 Filippova O, Hanel D.Grid refinement for lattice-BGKmodels.Journal of Computational Physics, 1998, 147(1):219-228
[52]  24 Khali S, Nebbali R, Ameziani DE, et al.Numerical investi-gation of non-Newtonian fluids in annular ducts with finiteaspect ratio using lattice Boltzmann method.Physical Re-view E, 2013, 87(5):053002, 1-15
[53]  25 Leonardi CR, Owen DRJ, Feng YT.Numerical rheometryof bulk materials using a power law fluid and the latticeBoltzmann method.Journal of Non-Newtonian Fluid Me-chanics, 2011, 166(12):628-638
[54]  26 Ali SS, Kayvan S, Mehrdad R.On the use of lattice Boltz-mann model for simulating dean flow of non-Newtonianfluids in curved square ducts.Communications in Nonlin-ear Science and Numerical Simulation, 2012, 17(11):4250-4261
[55]  27 Sullivan SP, Gladden LF, Johns ML.Simulation of power-law fluid flow through porous media using lattice Boltz-mann techniques.Journal of Non-Newtonian Fluid Mechanics, 2006, 133(2):91-98
[56]  53 Yoshino M, Toriumi Y, Arai M.Lattice Boltzmann simula-tion of two-phase viscoelastic fluid flows.Journal of Com-puter Science and Technology, 2008, 2(2):330-340
[57]  54 Frank X, Li HZ.Negative wake behind a sphere risingin viscoelastic fluids:a lattice Boltzmann investigation.Physical Review E, 2006, 74(5):056307, 1-9
[58]  55 Malaspinas O, Fiétier N, Deville M.Lattice Boltzmannmethod for the simulation of viscoelastic fluid flows.Journal of Non-Newtonian Fluid Mechanics, 2010, 165(21):1637-1653

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133