全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混凝土疲劳分析方法综述

DOI: 10.6052/1000-0879-14-167, PP. 40-48

Keywords: 混凝土,疲劳,物理机理,随机性

Full-Text   Cite this paper   Add to My Lib

Abstract:

从探究物理机制的视角对混凝土疲劳研究进行了逻辑上的梳理,表明既有研究可分为3类主要模型基于疲劳试验分析的现象学模型、基于断裂力学的疲劳裂纹扩展模型和基于损伤力学的疲劳损伤演化模型.通过解析具有典型性的研究,论述了不同类型研究的特点.进而,从还原论的角度出发,阐明了速率过程理论可以作为解释混凝土材料疲劳损伤演化的物理基础.注意到疲劳试验结果所表现出的显著随机性,阐述了应以物理随机系统思想研究混凝土疲劳问题的观点.

References

[1]  22 Ba?ant ZP, Schell WF. Fatigue fracture of high-strength concrete and size effect. ACI Materials Journal, 1993, 90 (5): 472-478
[2]  1 Aas-Jakobsen K. Fatigue of concrete beams and columns. Bulletin No. 70-1, NTH Institute of Betonkonstruksjoner, Trondheim, 1970
[3]  2 Tepfers R, Kutti T. Fatigue strength of plain, ordinary, and lightweight concrete. ACI Journal, 1979, 76 (5): 635-652
[4]  3 Hsu T. Fatigue of plain concrete. ACI Journal, 1981, 78 (4): 292-305
[5]  4 Holmen J. Fatigue of concrete by constant and variable amplitude loading. ACI Special Publication, 1982, 75: 71-110
[6]  5 Cornelissen H. Fatigue failure of concrete in tension. Heron, 1984, 29 (4): 1-68
[7]  6 吴佩刚, 赵光仪, 白利明. 高强混凝土抗压疲劳性能研究. 土木工程学报, 1994, 27 (3): 33-40
[8]  7 Kim J, Kim Y. Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, 1996, 26 (10): 1513-1523
[9]  8 Taliercio ALF, Gobbi E. Experimental investigation on the triaxial fatigue behaviour of plain concrete. Magazine of Concrete Research, 1996, 48 (176): 157-172
[10]  9 Gao L, Hsu CTT. Fatigue of concrete under uniaxial compression cyclic loading. ACI Materials Journal, 1998, 95 (5): 575-581
[11]  10 欧进萍, 林燕清. 混凝土高周疲劳损伤的性能劣化试验研究. 土木工程学报, 1999, 32 (5): 15-22
[12]  11 李朝阳, 宋玉普, 赵国藩. 混凝土疲劳残余应变性能研究. 大连理工大学学报, 2001, 41 (3): 355-358
[13]  12 赵东拂. 混凝土多轴疲劳破坏准则研究. [博士论文]. 大连: 大连理工大学, 2002
[14]  13 Cornelissen H, Reinhardt H. Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading. Magazine of Concrete Research, 1984, 36 (129): 216-226
[15]  14 Ba?ant ZP, Xu K. Size effect in fatigue fracture of concrete. ACI Materials Journal, 1991, 88 (4): 390-399
[16]  15 Oh B. Fatigue life distributions of concrete for various stress levels. ACI Materials Journal, 1991, 88 (2): 122-128
[17]  16 Hohberg R. Zum ermüdungsverhalten von beton. [PhD Thesis]. Berlin: TU Berlin, 2004
[18]  17 Breitenbücher R, Ibuk H. Experimentally based investigations on the degradation process of concrete under cyclic load. Materials and Structures, 2006, 39 (7): 717-724
[19]  18 Breitenbücher R, Ibuk H, Alawieh H. Influence of cyclic loading on the degradation of mechanical concrete properties. In: Grosse CU. Advances in Construction Materials 2007. Berlin: Springer Berlin-Heideberg, 2007. 317-324
[20]  19 Paris P, Gomez M, Anderson W. A rational analytic theory of fatigue. The Trend in Engineering, 1961, 13 (1): 9-14
[21]  20 Perdikaris PC, Calomino AM. Kinetics of crack growth in plain concrete. In: Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, New York, 1987
[22]  21 Baluch MH, Qureshy AB, Azad AK. Fatigue crack propagation in plain concrete. In: Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, New York, 1989
[23]  23 吴智敏, 赵国藩, 黄承逵. 混凝土疲劳断裂特性研究. 土木工程学报, 1995, 28 (3): 59-65
[24]  24 Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials. International Journal of Solids and Structures, 1994, 31 (3): 291-302
[25]  25 易成, 沈世钊. 疲劳裂纹扩展理论及其在混凝土疲劳性能研究中的应用. 哈尔滨建筑大学学报, 2000, (5): 20-24
[26]  26 Carpinteri A, Spagnoli A, Vantadori S. A multifractal analysis of fatigue crack growth and its application to concrete. Engineering Fracture Mechanics, 2010, 77 (6): 974-984
[27]  27 Barenblatt G. Scaling phenomena in fatigue and fracture. Advances in Fracture Research: Honour and Plenary Lectures Presented at the 11th International Conference on Fracture (ICF11), Turin, 2005
[28]  28 Ba?ant ZP, Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton: CRC Press, 1998
[29]  29 陈瑛, 姜弘道, 乔丕忠等. 混凝土黏聚开裂模型若干进展. 力学进展, 2005, 35(3): 377-390
[30]  30 Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6 (6): 773-781
[31]  31 Gylltoft K. Fracture mechanics models for fatigue in concrete structures. [PhD Thesis]. Lulea: Lulea University of Technology, 1983
[32]  32 Reinhardt H, Cornelissen H, Hordijk D. Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 1986, 112 (11): 2462-2477
[33]  33 Yankelevsky D, Reinhardt H. Uniaxial behavior of concrete in cyclic tension. Journal of Structural Engineering, 1989, 115 (1): 166-182
[34]  34 Hordijk D. Local approach to fatigue of concrete. [PhD Thesis]. Delft: Delft University of Technology, 1991
[35]  35 Nguyen O, Repetto E, Ortiz M, et al. A cohesive model of fatigue crack growth. International Journal of Fracture, 2001, 110 (4): 351-369
[36]  36 Yang B, Mall S, Ravi-Chandar K. A cohesive zone model for fatigue crack growth in quasibrittle materials. International Journal of Solids and Structures, 2001, 38 (22-23): 3927-3944
[37]  37 Xu Y, Yuan H. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Engineering Fracture Mechanics, 2009, 76 (2): 165-181
[38]  38 Duda H, Konig G. Rheological material model for the stress-crack-width relation of concrete under monotonic and cyclic tension. ACI Materials Journal, 1991, 88 (3): 278-287
[39]  39 Kessler-Kramer C, Mechtcherine V, Müller H. Testing and modeling the behavior of concrete under cyclic tensile loading. In: Proceedings of the 5th International Conference on Fracture Mechanics of Concrete Structures, Vail, 2004
[40]  40 Jaubert A, Marigo J. Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Continuum Mechanics and Thermodynamics, 2006, 18 (1): 23-45
[41]  41 Abdelmoula R, Marigo JJ, Weller T. Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models. Annals of Solid and Structural Mechanics, 2010, 1 (3-4): 139-158
[42]  42 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社, 2014
[43]  43 Marigo J. Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Engineering Fracture Mechanics, 1985, 21 (4): 861-874
[44]  44 Papa E, Taliercio A. Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete. Engineering Fracture Mechanics, 1996, 55 (2): 163-179
[45]  45 Alliche A. Damage model for fatigue loading of concrete. International Journal of Fatigue, 2004, 26 (9): 915-921
[46]  46 Mai SH, Le-Corre F, Foret G, et al. A continuum damage modeling of quasi-static fatigue strength of plain concrete. International Journal of Fatigue, 2012, 37: 79-85
[47]  47 Suaris W, Ouyang C, Fernando V. Damage model for cyclic loading of concrete. Journal of Engineering Mechanics, 1990, 116 (5): 1020-1035
[48]  48 Al-Gadhib A, Baluch M, Shaalan A, et al. Damage model for monotonic and fatigue response of high strength concrete. International Journal of Damage Mechanics, 2000, 9 (1): 57
[49]  49 Lü P, Li Q, Song Y. Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces. International Journal of Solids and Structures, 2004, 41 (11-12): 3151-3166
[50]  50 Lemaitre J, Lippmann H. A Course on Damage Mechanics. Berlin: Springer, 1996
[51]  51 Desmorat R, Ragueneau F, Pham H. Continuum damage mechanics for hysteresis and fatigue of quasi-brittle materials and structures. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31 (2): 307-329
[52]  52 潘华, 邱洪兴. 基于损伤力学的混凝土疲劳损伤模型. 东南大学学报(自然科学版), 2006, 36 (4): 605-608
[53]  53 Richard B, Ragueneau F, Cremona C, et al. Isotropic continuum damage mechanics for concrete under cyclic loading: stiffness recovery, inelastic strains and frictional sliding. Engineering Fracture Mechanics, 2010, 77 (8): 1203-1223
[54]  54 Tobolsky A, Eyring H. Mechanical properties of polymeric materials. The Journal of Chemical Physics, 1943, 11(3): 125-134
[55]  55 Zhurkov SN, Narzullaev B. Time dependence of strength of solids. Zhurnal Tekhnicheskoi Fiziki, 1953, 23 (10): 1677-1689
[56]  56 Zhurkov SN. Kinetic concept of the strength of solids. International Journal of Fracture, 1965, 1 (4): 311-323
[57]  57 Le JL, Ba?ant ZP, Bazant MZ. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1291-1321
[58]  58 Le JL, Ba?ant ZP. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1322-1337

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133