7 Kim J, Kim Y. Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, 1996, 26 (10): 1513-1523
[9]
8 Taliercio ALF, Gobbi E. Experimental investigation on the triaxial fatigue behaviour of plain concrete. Magazine of Concrete Research, 1996, 48 (176): 157-172
[10]
9 Gao L, Hsu CTT. Fatigue of concrete under uniaxial compression cyclic loading. ACI Materials Journal, 1998, 95 (5): 575-581
13 Cornelissen H, Reinhardt H. Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading. Magazine of Concrete Research, 1984, 36 (129): 216-226
[15]
14 Ba?ant ZP, Xu K. Size effect in fatigue fracture of concrete. ACI Materials Journal, 1991, 88 (4): 390-399
[16]
15 Oh B. Fatigue life distributions of concrete for various stress levels. ACI Materials Journal, 1991, 88 (2): 122-128
[17]
16 Hohberg R. Zum ermüdungsverhalten von beton. [PhD Thesis]. Berlin: TU Berlin, 2004
[18]
17 Breitenbücher R, Ibuk H. Experimentally based investigations on the degradation process of concrete under cyclic load. Materials and Structures, 2006, 39 (7): 717-724
[19]
18 Breitenbücher R, Ibuk H, Alawieh H. Influence of cyclic loading on the degradation of mechanical concrete properties. In: Grosse CU. Advances in Construction Materials 2007. Berlin: Springer Berlin-Heideberg, 2007. 317-324
[20]
19 Paris P, Gomez M, Anderson W. A rational analytic theory of fatigue. The Trend in Engineering, 1961, 13 (1): 9-14
[21]
20 Perdikaris PC, Calomino AM. Kinetics of crack growth in plain concrete. In: Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, New York, 1987
[22]
21 Baluch MH, Qureshy AB, Azad AK. Fatigue crack propagation in plain concrete. In: Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, New York, 1989
24 Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials. International Journal of Solids and Structures, 1994, 31 (3): 291-302
26 Carpinteri A, Spagnoli A, Vantadori S. A multifractal analysis of fatigue crack growth and its application to concrete. Engineering Fracture Mechanics, 2010, 77 (6): 974-984
[27]
27 Barenblatt G. Scaling phenomena in fatigue and fracture. Advances in Fracture Research: Honour and Plenary Lectures Presented at the 11th International Conference on Fracture (ICF11), Turin, 2005
[28]
28 Ba?ant ZP, Planas J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton: CRC Press, 1998
30 Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6 (6): 773-781
[31]
31 Gylltoft K. Fracture mechanics models for fatigue in concrete structures. [PhD Thesis]. Lulea: Lulea University of Technology, 1983
[32]
32 Reinhardt H, Cornelissen H, Hordijk D. Tensile tests and failure analysis of concrete. Journal of Structural Engineering, 1986, 112 (11): 2462-2477
[33]
33 Yankelevsky D, Reinhardt H. Uniaxial behavior of concrete in cyclic tension. Journal of Structural Engineering, 1989, 115 (1): 166-182
[34]
34 Hordijk D. Local approach to fatigue of concrete. [PhD Thesis]. Delft: Delft University of Technology, 1991
[35]
35 Nguyen O, Repetto E, Ortiz M, et al. A cohesive model of fatigue crack growth. International Journal of Fracture, 2001, 110 (4): 351-369
[36]
36 Yang B, Mall S, Ravi-Chandar K. A cohesive zone model for fatigue crack growth in quasibrittle materials. International Journal of Solids and Structures, 2001, 38 (22-23): 3927-3944
[37]
37 Xu Y, Yuan H. Computational analysis of mixed-mode fatigue crack growth in quasi-brittle materials using extended finite element methods. Engineering Fracture Mechanics, 2009, 76 (2): 165-181
[38]
38 Duda H, Konig G. Rheological material model for the stress-crack-width relation of concrete under monotonic and cyclic tension. ACI Materials Journal, 1991, 88 (3): 278-287
[39]
39 Kessler-Kramer C, Mechtcherine V, Müller H. Testing and modeling the behavior of concrete under cyclic tensile loading. In: Proceedings of the 5th International Conference on Fracture Mechanics of Concrete Structures, Vail, 2004
[40]
40 Jaubert A, Marigo J. Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Continuum Mechanics and Thermodynamics, 2006, 18 (1): 23-45
[41]
41 Abdelmoula R, Marigo JJ, Weller T. Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models. Annals of Solid and Structural Mechanics, 2010, 1 (3-4): 139-158
[42]
42 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社, 2014
[43]
43 Marigo J. Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Engineering Fracture Mechanics, 1985, 21 (4): 861-874
[44]
44 Papa E, Taliercio A. Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete. Engineering Fracture Mechanics, 1996, 55 (2): 163-179
[45]
45 Alliche A. Damage model for fatigue loading of concrete. International Journal of Fatigue, 2004, 26 (9): 915-921
[46]
46 Mai SH, Le-Corre F, Foret G, et al. A continuum damage modeling of quasi-static fatigue strength of plain concrete. International Journal of Fatigue, 2012, 37: 79-85
[47]
47 Suaris W, Ouyang C, Fernando V. Damage model for cyclic loading of concrete. Journal of Engineering Mechanics, 1990, 116 (5): 1020-1035
[48]
48 Al-Gadhib A, Baluch M, Shaalan A, et al. Damage model for monotonic and fatigue response of high strength concrete. International Journal of Damage Mechanics, 2000, 9 (1): 57
[49]
49 Lü P, Li Q, Song Y. Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces. International Journal of Solids and Structures, 2004, 41 (11-12): 3151-3166
[50]
50 Lemaitre J, Lippmann H. A Course on Damage Mechanics. Berlin: Springer, 1996
[51]
51 Desmorat R, Ragueneau F, Pham H. Continuum damage mechanics for hysteresis and fatigue of quasi-brittle materials and structures. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31 (2): 307-329
53 Richard B, Ragueneau F, Cremona C, et al. Isotropic continuum damage mechanics for concrete under cyclic loading: stiffness recovery, inelastic strains and frictional sliding. Engineering Fracture Mechanics, 2010, 77 (8): 1203-1223
[54]
54 Tobolsky A, Eyring H. Mechanical properties of polymeric materials. The Journal of Chemical Physics, 1943, 11(3): 125-134
[55]
55 Zhurkov SN, Narzullaev B. Time dependence of strength of solids. Zhurnal Tekhnicheskoi Fiziki, 1953, 23 (10): 1677-1689
[56]
56 Zhurkov SN. Kinetic concept of the strength of solids. International Journal of Fracture, 1965, 1 (4): 311-323
[57]
57 Le JL, Ba?ant ZP, Bazant MZ. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1291-1321
[58]
58 Le JL, Ba?ant ZP. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1322-1337