全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多孔金属及其夹芯结构力学性能的研究进展

DOI: 10.6052/1000-0879-14-180

Keywords: 多孔金属,夹芯结构,塑性动力响应,能量吸收,冲击载荷

Full-Text   Cite this paper   Add to My Lib

Abstract:

高孔隙率多孔金属及其夹芯复合结构是一种物理功能与结构一体化的新型、轻质高强材料/结构,具有高比强度、高比刚度和优良的吸能和缓冲性能等多种功能,引起了学术界和工程界众多研究者的极大关注.本文概述了轻质多孔金属及其夹芯结构的制备方法、多功能特性及其应用,介绍了多孔金属夹芯结构元件(梁、板、壳)遭受准静态和动态冲击载荷下的理论、实验和模拟方面的国内外研究现状,分析和讨论了多孔金属及其夹芯结构力学行为研究中的研究手段和基本问题,重点关注了多孔金属夹芯结构的变形/失效、动态响应和能量吸收.

References

[1]  1 Evans AG. Lightweight materials and structures. Mater Res Bull, 2001, 26 (10): 790-797
[2]  2 Dannemann KA, Lankford J Jr. High strain rate compression of closed-cell aluminum foams. Mater Sci Eng A, 2000, 293 (1-2): 157-164
[3]  3 卢天健, 何德坪, 陈常青等. 超轻多孔金属材料的多功能特性及应用. 力学进展, 2006, 36 (4): 517-535
[4]  4 范华林, 杨卫. 轻质高强点阵材料及其力学性能研究进展. 力学进展, 2007, 37 (1): 99-112
[5]  5 卢天健, 刘涛, 邓子辰. 多孔金属材料多功能化设计的若干进展. 力学与实践, 2008, 30 (1): 1-9
[6]  6 范华林, 金丰年, 方岱宁. 格栅结构力学性能研究进展. 力学进展, 2008, 38 (1): 35-52
[7]  7 方岱宁, 张一慧, 崔晓东. 轻质点阵材料力学与多功能设计. 北京: 科学出版社, 2009
[8]  8 王志华, 朱峰, 赵隆茂. 多孔金属夹芯结构动力学行为及其应用. 北京: 兵器工业出版社, 2010
[9]  9 Ashby MA, Evans AG, Fleck NA, et al. Metal Foams: A Design Guide. Oxford: Butterworth Heinemann, 2000
[10]  10 Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 2001, 46 (6): 559-632
[11]  11 Gibson LJ, Ashby MF. Cellular Solids: Structures and Properties (2nd edn). Cambridge: Cambridge University Press, 1997
[12]  12 Lu TJ, Ong JM. Characterization of close-celled cellular aluminum alloys. J Mater Sci, 2001, 36 (11): 2773-2786
[13]  41 Papka SD, Kyriakides S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia, 1998, 46 (4): 2765-2776
[14]  42 Triantafyllidis N, Schraad MW. Onset of failure in aluminum honeycombs under general in-plane loading. Journal of the Mechanics and Physics of Solids, 1998, 46 (6): 1089-1124
[15]  43 Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two dimensional foams. Journal of the Mechanics and Physics of Solids, 1999, 47 (11): 2235-2272
[16]  44 Gu S, Lu TJ, Evans AG. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer, 2001, 44: 2163-2175
[17]  45 Warren WE, Kraynik AM. The nonlinear elastic behavior of open-cell foams. ASME Journal of Applied Mechanics, 1991, 58 (2): 376-381
[18]  46 Zhu HX, Mills NJ, Knott JF. Analysis of the high strain compression of open-cell foams. Journal of the Mechanics and Physics of Solids, 1997, 45 (11-12): 1875-1899, 1901-1904
[19]  47 Gong L, Kyriakides S, Jang WY. Compressive response of open-cell foams part I: morphology and elastic properties. International Journal of Solids and Structure, 2005, 42 (5-6): 1355-1379
[20]  48 Gong L, Kyriakides S, Jang WY. Compressive response of open cell foams part II: initiation and evolution of crushing. International Journal of Solids and Structures, 2005, 42 (5-6): 1381-1399
[21]  49 Warren WE, Kraynik AM. Foam mechanics: the linear elastic response of two-dimensional spatially periodic cellular materials. Mechanics of Materials, 1987, 6 (1): 27-37
[22]  50 Grenestedt JL. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. Journal of the Mechanics and Physics of Solids, 1998, 46 (1): 29-50
[23]  51 Simone AE, Gibson LJ. The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams. Acta Materialia, 1998, 46 (11): 3929-3935
[24]  52 Silva MJ, HayesWC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. International Journal of Mechanical Sciences, 1995, 37 (11): 1161-1177
[25]  53 Silva MJ, Gibson LJ. The effect of non-periodic microstructure and defects on the compressive strength of twodimensional cellular solids. International Journal of Mechanical Sciences, 1997, 39 (5): 549-563
[26]  54 Lu TJ, Chen C. Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Materialia, 1999, 47 (5): 1469-1485
[27]  55 Li K, Gao XL, Subhashb G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams. Journal of the Mechanics and Physics of Solids, 2006, 54 (4): 783-806
[28]  56 Gibson LJ, Ashby MF, Zhang J, et al. Failure surface for cellular material under multiaxial loads——I. Modelling. Int J Mech Sci, 1989, 31 (9): 635-663
[29]  57 Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. J Mech Phys Sol, 2000, 48 (6-7): 1253-1283.
[30]  58 Miller RE. Continuum plasticity model for the constitutive and indentation behavior of foamed metals. Int Mech Sci, 2000, 42 (4): 729-754.
[31]  59 Mohr D, Doyoyo M. A new method for the biaxial testing of cellular solids. Experimental Mechanics, 2003, 43(2): 173-182
[32]  60 Doyoyo M, Wierzbicki T. Experimental studies on the yield behavior of ductile and brittle aluminum foams. Int J Plasticity, 2003, 19 (8): 1195-1214
[33]  61 Doyoyo M, Mohr D. Microstructural response of aluminum honeycomb to combined out-of-plane loading. Mechanics of Materials, 2003, 35(9): 865-876
[34]  62 Arcan M, Hashion Z, Voloshin A. A method to produce uniform plane-stress states with applications to fiberreinforced materials. Experimental Mechanics, 1978, 18 (4): 141-146
[35]  63 Hong S T, Pan J, Tyan T, et al. Dynamic crush behaviours of aluminium honeycomb specimens under compression dominant inclined loads. International Journal of Plasticity, 2008, 24 (1): 89-117
[36]  64 Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids, 1999, 47 (11): 2235-2272
[37]  65 Grenestedt JL. Effective elastic behavior of some models for perfect cellular solids. International Journal of Solids and Structures, 1999, 36 (10): 1471-1501
[38]  66 Grenestedt JL, Bassinet F. Influence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids. Int J Mech Sci, 2000, 42 (7): 1327-1338
[39]  67 Ableidinger A. Some aspects of the fracture behavior of metal foams. [PhD Thesis]. Vienna: Vienna University of Technology, 2000
[40]  68 Daxner T, Bohm HJ, Rammerstorfer FG, et al. Simulation of elastic-plastic behavior of metal foam using 2D and 3D unit cell models. Mater Wiss Werkstofftechnik, 2000, 31 (6): 447-450
[41]  69 Reid SR, Reddy TY. Experimental investigation of inertia effects in one-dimensional metal ring systems subjected to end impact-I: fixed-ended systems. Int J Impact Engng, 1983, 1 (1): 85-106
[42]  70 Dannemann KA, Lankford JJ. High strain rate compression of closed-cell aluminum foams. Material Science and Engineering A, 2000, 293 (1-2): 157-164
[43]  71 Deshpande VS, Fleck NA. High strain rate compressive behavior of aluminum alloy foams. International Journal Impact Engineering, 2000, 24 (3): 277-298
[44]  72 Lee S, Barthelat F, Moldovan N, et al. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials. International Journal of Solids and Structures, 2006, 43 (1): 53-73
[45]  73 Montanini R. Measurement of strain rate sensitivity of aluminum foams for energy dissipation. International Journal of Mechanical Science, 2005, 47 (1): 26-42
[46]  74 Kanahashi H, Mukai T, Yamada Y, et al. Dynamic compression of an ultra-low density aluminum foam. Material Science and Engineering A, 2000, A280: 349-353
[47]  75 Wang ZH, Ma HW, Zhao LM, et al. Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scripta Materialia, 2006, 54 (1): 83-87
[48]  76 Han FS, Cheng HF, Li ZB, et al. The strain rate effect of an open cell aluminum foam. Metallurgical and Materials Transactions A, 2005, 36 (3): 645-650
[49]  77 Kenny LD. Mechanical properties of particle stabilized aluminum foam. Material Science Forum, 1996, 217-222: 1883-1890
[50]  78 王曦. 泡沫铝的动态力学行为及泡沫铝夹芯梁的弹塑性行为研究. [硕士论文]. 合肥:中国科学技术大学, 2001
[51]  79 胡时胜, 王悟, 潘艺等. 泡沫材料的应变率效应. 爆炸与冲击, 2003, 23 (1): 13-18
[52]  88 Parkash O, Sang H, Embury JD. Structure and properties of Al-SiC foam. Materials Science and Engineering: A, 1995, 199 (2): 195-203
[53]  89 Gradinger R, Rammerstorfer FG. On the influence of mesoinhomogeneities on the crush worthness of metal foams. Acta Mater, 1999, 47 (1): 143-148
[54]  90 曾斐, 潘艺, 胡时胜. 泡沫铝缓冲吸能评估及其特性. 爆炸与冲击, 2002, 22 (4): 358-362
[55]  91 Beals JT, Thompson MS. Density gradient effects on aluminum foam compression behavior. Journal of Materials Science, 1997, 32 (13): 3595 -3600
[56]  92 韩福生, 朱震刚, 刘长松. 泡沫Al 压缩形变及能量吸收特征. 物理学报, 1998, 47 (3): 520-528
[57]  93 王志华. 泡沫铝合金动态力学性能及其吸能机理的研究. [博士论文]. 太原:太原理工大学, 2005
[58]  94 卢子兴, 郭宇. 金属泡沫材料力学行为的研究概述. 北京航空航天大学学报, 2003, 29 (11): 978-983
[59]  95 曹晓卿. 泡沫铝材料动力学特性的实验研究与理论分析. [博士论文]. 太原:太原理工大学, 2005
[60]  96 Hilyard NC, Djiauw LK. Observations on the impact behaviour of polyurethane foams: I. The polymer matrix. Journal of Cellular Plastics January, 1971, 7 (1): 33-42
[61]  97 Gordon JE, Jeronimidis G. Work of fracture of natural cellulose . Nature, 1974, 252: 116
[62]  98 Rusch KC. Impact energy absorption by foamed polymers. Journal of Cellular Plastics, 1971, 7: 78-83
[63]  99 Miltz J, Gruenbaum G. Evaluation of cushion properties of plastic foams compressive measurements. Polymer Engineering and Science, 1981, 21 (15): 1010-1014
[64]  100 Rusch KC. Load{compression behavior of flexible foams. J Appl Polym Sci, 1969, 13(11): 2297-2311
[65]  101 Meinecke EA, Schwaber DM. Energy absorption in polymeric foams. I. Prediction of impact behavior from instron data for foams with rate-independent modulus. J Appl Polym Sci, 1970, 14 (9): 2239-2248
[66]  102 Nagy A, Ko WL, Lindholm US, Mechanical behavior of foamed materials under dynamic compression. J Cell Plastics, 1974, 10 (3): 127-134
[67]  103 Sherwood JA, Frost CC. Constitutive modeling and simulation of energy absorbing polyurethane foam. Polymer Eng Sci, 1992, 32 (16): 1138-1146
[68]  104 Chou CC, Zhao Y, Chai L, et al. Development of foam models as applications to vehicle interior. In: Proceedings of the 39th Stapp Car Crash Conference, California, 1995
[69]  105 Faruque O, Liu N, Chou CC. Strain rate dependent foamconstitutive modeling and applications. SAE Technical Paper, 1997
[70]  106 Zhang J, Kikuchi N, Li V, et al. Constitutive modeling of polymeric foam material subjected to dynamic crash loading. International Journal of Impact Engineering, 1998, 21 (5): 369-386
[71]  107 Wang ZH, Jing L, Zhao LM. Elasto-plastic constitutive modeling of aluminum alloy foam subjected to impact loading. Transactions of Nonferrous Metals Society of China, 2011, 21 (3): 449-454
[72]  108 Boade RR. Compression of porous copper by shock waves. Journal of Applied Physics, 1968, 39 (12): 5693-5700
[73]  109 Boade RR. Dynamic compression of porous tungsten. Journal of Applied Physics, 1969, 40 (9): 3781-3785
[74]  110 Bonnan Stephane, Hereil Pierre Louis. Experimental characterization of quasi static and shock wave behavior. Journal of Applied Physics, 1998, 83 (11): 5741-5749
[75]  111 Hereil PL, Bonnan S, Collombet F. Experimental characterization of shock wave behavior of porous aluminum. Journal De Physique Ⅳ, 1997, 7: 535-540
[76]  112 Tsai L, Prakash V. Structure of weak shock waves in 2-D layered material systems. International Journal of Solids and Structures, 2005, 42 (2): 727-750
[77]  113 王海福, 冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲击波压力特性. 爆炸与冲击, 1999, 19 (1): 78-83
[78]  114 王永刚, 胡时胜, 王礼立. 爆炸载荷下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究. 爆炸与冲击, 2003, 23 (6): 516522
[79]  115 Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19 (5-6): 531-570
[80]  116 Cooper GJ, Townend DJ, Cater SR, et al. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials. J Biomech, 1991, 24 (5): 273-285
[81]  117 Shim VPW, Tay BY, Stronge WJ. Dynamic crushing of strain-softening cellular structures——a one-dimensional analysis. Trans ASME J Engng Mater Tech, 1990, 112 (4): 398-405
[82]  118 Pattofatto S, Elnasri I, Zhao H, et al. Shock enhancement of cellular structures under impact loading: Part II: analysis. Journal of the Mechanics and Physics of Solids, 2007, 55 (12): 2672-2686
[83]  119 Reid SR, Bell WW, Barr RA. Structural plastic shock model for onedimensional ring systems. Int J Impact Eng, 1983, 1(2): 175-191
[84]  120 Li QM, Meng H. Attenuation or enhancement —— a onedimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27 (10): 1049-1065
[85]  121 Daxner T, Bohm HJ, Rammerstorfer FG. Mesoscopic simulation of inhomogeneous metallic foams with respect to energy absorption. Computational Materials Science, 1999, 16 (1-4): 61-69
[86]  122 王志华, 张铱鈖, 任会兰等. 冲击波在泡沫金属材料中传播特性的研究. 中国科学G, 2009, 39 (9): 1258-1267
[87]  123 Steeves CA, Fleck NA. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design. International Journal of Mechanical Sciences, 2004, 46 (4): 561-583
[88]  124 Steeves CA, Fleck NA. Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part II: experimental investigation and numerical modeling. International Journal of Mechanical Sciences, 2004, 46 (4): 585-608
[89]  125 Deshpande VS, Fleck NA. Collapse of truss core sandwich beams in 3-point bending. International Journal of Solids and Structures, 2001, 38 (36-37): 6275-6305
[90]  129 Jing L, Wang ZH, Zhao LM. Failure and deformation modes of sandwich beams under quasi-static loading. Applied Mechanics and Materials, 2010, 29-32: 84-88
[91]  130 McCormack TM, Miller R, Kesler O, et al. Failure of sandwich beams with metallic foam cores. International of Journal of Solid and Structures, 2001, 38 (28-29): 4901-4920
[92]  131 Tagarielli VL, Fleck NA, Deshpande VS. Collapse of clamped and simply supported composite sandwich beams in three-point bending. Composites: Part B, 2004, 35 (6-8): 523-534
[93]  132 Tagarielli VL, Fleck NA. A comparison of the structural response of clamped and simply supported sandwich beams with aluminum faces and a metal foam core. Journal of Applied Mechanics, 2005, 72 (3): 408-417
[94]  133 Chen C, Harte AM, Fleck NA. The plastic collapse of sandwich beams with a metallic foam core. International Journal of Mechanical Sciences, 2001, 43 (6): 1483-1506
[95]  134 Bart-Smith H, Hutchinson J, Evans A. Measurement and analysis of the structural performance of cellular metal sandwich construction. International Journal of Mechanical Sciences, 2001, 43 (8): 1945-1963
[96]  135 Wick N, Hutchinson JW. Optimal truss plate. International Journal of Solids and Structures, 2002, 38 (30-31): 5165-5183
[97]  136 Rubino V, Deshpande VS, Fleck NA. The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading. International Journal of Mechanical Sciences, 2008, 50 (2): 233-246
[98]  137 Rubino V, Deshpande VS, Fleck NA. The three-point bending of Y-frame and corrugated core sandwich beams. International Journal of Mechanical Sciences, 2010, 52 (3): 485-494
[99]  138 Koissin V, Shipsha A, Rizov V. The inelastic quasi-static response of sandwich structures to local loading. Composite Structures, 2004, 64 (2): 129-138
[100]  139 Styles M, Compston P, Kalyanasundaram S. Finite element modeling of core thickness effects in aluminum foam/composite sandwich structures under flexural loading. Composite Structures, 2008, 86 (1-3): 227-232
[101]  140 Kesler O, Gibson LJ. Size effects in metallic foam core sandwich beams. Materials Science and Engineering A, 2002, 326 (2): 228-234
[102]  141 Hazizan MA, Cantwell WJ. The low velocity impact response of foam-based sandwich structures. Composites: Part B, 2002, 33 (3): 193-204
[103]  142 Meo M, Morris AJ, Vignjevic R, et al. Numerical simulations of low-velocity impact on an aircraft sandwich panel. Composite Structures, 2003, 62 (3-4): 353-360
[104]  143 Besant T, Davies GAO, Hitchings D. Finite element modeling of low velocity impact of composite sandwich panels. Composites: Part A, 2001, 32 (9): 1189-1196
[105]  144 Radford DD, Deshpande VS, Fleck NA. The use of metal foam projectiles to simulate shock loading on a structure. International Journal of Impact Engineering, 2005, 31 (9): 1152-1171
[106]  145 Radford DD, Fleck NA, Deshpande VS. The response of clamped sandwich beams subjected to shock loading. International Journal of Impact Engineering, 2006, 32 (6): 968-987
[107]  146 Rubino V, Deshpande VS, Fleck NA. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core. International Journal of Impact Engineering, 2008, 35 (8): 829-844
[108]  147 Abrate S. Impact on composite structures. Composite Structures, 2001, 51 (2): 129-138
[109]  148 Hoo Fatt MSH, Park KS. Dynamic models for low-velocity impact damage of composite sandwich panels. Composite Structure, 2001, 52 (3-4): 335-351
[110]  149 Makinen K. Underwater shock loaded sandwich structures. [PhD Thesis]. Sweden: Department of Aeronautics, Royal Institute of Technology, 1999
[111]  150 Yehia AB, George JD. Behaviour of sandwich plates reinforced with polyurethane/polyuria interlayers under blast loads. Journal of Sandwich and Materials, 2007, 9: 261-281
[112]  151 Fleck NA, Deshpande VS. The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 2004, 71 (3): 386-401
[113]  152 Qiu X, Deshpande VS, Fleck NA. Impulsive loading of clamped monolithic and sandwich beams over a central patch. Journal of the Mechanics and Physics of solids, 2005, 53 (5): 1015-1046
[114]  153 Qin QH, Wang TJ. An analytical solution for the large de?ections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch. Composite Structures, 2009, 88 (4): 509-518
[115]  154 Qin QH, Wang TJ, Zhao SZ. Large deflections of metallic sandwich and monolithic beams under locally impulsive loading. International Journal of Mechanical Sciences, 2009, 51 (11-12): 752-773
[116]  155 Qin QH, Wang TJ. A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading. European Journal of Mechanics A/Solids, 2009, 28 (5): 1014-1025
[117]  156 Vaziri A, Hutchinson JW. Metal sandwich plates subject to intense air shocks. International Journal of Solids and Structures, 2007, 44 (6): 2021-2035
[118]  157 McMeeking RM, Spuskanyuk AV, He MY, et al. An analytic model for the response to water blast of unsupported metallic sandwich panels. International Journal of Solids and Structures, 2008, 45 (2): 478-496
[119]  158 Tilbrook MT, Deshpande VS, Fleck NA. The impulsive response of sandwich beams: analytical and numerical investigation of regimes of behaviour. Journal of the Mechanics and Physics of Solids, 2006, 54 (11): 2242-2280
[120]  159 Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part II: ‘Shock’ theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53 (10): 2206-2230
[121]  160 Liang Y, Spuskanyuk AV, Flores SE, et al. The response of metallic sandwich panels to water blast. Journal of Applied Mechanics, 2007, 74 (1): 81-99
[122]  161 McShane GJ, Deshpande, VS, Fleck NA. The underwater blast resistance of metallic sandwich beams with prismatic lattice cores. Journal of Applied Mechanics, 2007, 74 (2): 352-364
[123]  162 Tagarielli VL, Deshpande VS, Fleck NA. The dynamic response of composite sandwich beams to transverse impact. International Journal of Solids and Structures, 2007, 44 (7-8): 2442-2457
[124]  163 Rathbun HJ, Radford DD, Xue Z, et al. Performance of metallic honeycomb core sandwich beams under shock loading. International Journal of Solids and Structures, 2006, 43 (6): 1746-1763
[125]  164 Jing L, Wang ZH, Ning JG, et al. The dynamic response of sandwich beams with open-cell metal foam cores. Composites Part B: Engineering, 2011, 42 (1): 1-10
[126]  165 Jing L, Wang ZH, Ning JG, et al. The mechanical response of metallic sandwich beams under foam projectile impact loading. Latin American Journal of Solids and Structures, 2011, 8 (1): 107-120
[127]  166 Wang ZH, Jing L, Ning JG, et al. The structural response of clamped sandwich beams subjected to impact loading. Composite Structures, 2011, 93 (4): 1300-1308
[128]  167 Jing L, Yan QR, Wang ZH, et al. The dynamic mechanical behavior of sandwich beams with aluminum honeycomb cores. Advanced Science Letters, 2011, 4 (3): 731-735
[129]  168 Qiu X, Despande VS, Fleck NA. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. European Journal of Mechanics A/Solids, 2003, 22: 801-814
[130]  169 Tilbrook MT, Despande VS, Fleck NA. Underwater blast loading of sandwich beams: regimes of behavior. International Journal of Solids and Structures, 2009, 46 (17): 3209-3221
[131]  170 刘华, 朱小芹, 杨嘉陵. 冲击载荷下受轴向约束的点阵材料夹芯简支梁. 北京航空航天大学学报, 2009, 35 (2): 1451-1454
[132]  171 刘敬礼, 刘华, 杨嘉陵. 点阵材料夹芯悬臂梁在端部承受撞击的动力响应分析. 应用力学学报, 2008, 25 (2): 235-238
[133]  172 康建功, 石少卿, 刘颖芳等两端固支泡沫铝夹芯梁在冲击载荷作用下的动力响应. 振动与冲击, 2010, 29 (4): 130-134
[134]  173 Foo CC, Chai GB, Seah LK. Quasi-static and low-velocity impact failure of aluminum honeycomb sandwich panels. Journal of Materials: Design and Applications, 2006, 220 (2): 53-66
[135]  174 Belouettar S, Abbadi A, Azari Z, et al. Experimental investigation of static and fatigue behavior of composites honeycomb materials using four point bending tests. Composite Structures, 2009, 87 (3): 265-273
[136]  175 Ruan D, Lu GX, Wong YC. Quasi-static indentation tests on aluminum foam sandwich panels. Composite Structures, 2010, 92 (9): 2039-2046
[137]  176 Fan HL, Zhou Q, Yang W, et al. An experimental study on the failure mechanisms of woven textile sandwich panels under quasi-static loading. Composites: Part B, 2010, 41 (8): 686-692
[138]  177 Fan HL, Yang W, Zhou Q. Experimental research of compressive responses of multi-layered woven textile sandwich panels under quasi-static loading. Composites: Part B, 2011, 42 (5): 1151-1156
[139]  178 Shin KB, Lee JY, Cho SH. An experimental study of lowvelocity impact responses of sandwich panels for Korean low floor bus. Composite Structures, 2008, 84 (3): 228-240
[140]  179 Fatt MSH, Park KS. Dynamic models for low-velocity impact damage of composite sandwich panels. Part A: deformation. Composites Structures, 2001, 52 (3-4): 335-351
[141]  180 Fatt MSH, Park KS. Dynamic models for low-velocity impact damage of composite sandwich panels. Part B: damage initiation. Composites Structures, 2001, 52 (3-4): 353-364
[142]  181 Foo CC, Seah LK, Chai GB. Low-velocity impact failure of aluminum honeycomb sandwich panels. Composites Structures, 2008, 85 (1): 20-28
[143]  182 Khalili MR, Malekzadeh K, Mittal RK. Effect of physical and geometrical parameters on transverse low-velocity impact response of sandwich panels with a transversely flexible core. Composites Structures, 2007, 77 (4): 430-443
[144]  183 Etemadi E, Khatibi AA, Takaffoli M. 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact. Composites Structures, 2009, 89 (1): 28-34
[145]  184 Xie ZH, Vizzini AJ, Tang QR. On residual compressive strength prediction of composite sandwich panels after lowvelocity impact damage. Acta Mechanica Solida Sinica, 2006, 19 (1): 9-17
[146]  185 Mines RAW, Worrall CM, Gibson AG. Low velocity perforation behavior of polymer composite sandwich panels. Int J Impact Engng, 1998, 21 (10): 855-879
[147]  186 Olsson R, McManus HL. Improved theory for contact indentation of sandwich panels. Am Inst Aeronaut Astronaut J, 1996, 34 (6): 1238-1244
[148]  187 Anderson TA. An investigation of SDOF models for large mass impact on sandwich composites. Composites: Part B, 2005, 36 (2): 135-142
[149]  188 Hassan MA, Cantwell WJ. The low velocity impact response of an aluminum honeycomb sandwich structure. Composites: Part B, 2003, 34 (8): 679-687
[150]  189 Kassno H. Impact perforation of orthotropic and quasiisotropic CFRP laminates by a steel ball projectile. Adv Compos Mater, 2001, 10 (4): 309-318
[151]  190 Karagiozova D, Nurick GN, Langdon GS, et al. Response of flexible sandwich-type panels to blast loading. Composites Science and Technology, 2009, 69, (6): 754-763
[152]  191 Dharmasena KP, Wadley HNG, Xue Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int J of Impact Engineering, 2008, 35 (9): 1063-1074
[153]  192 Nurick GN, Langdon GS, Chi Y, et al. Behavior of sandwich panels subjected to intense air blast. Part 1: experiments. Composite Structures, 2009, 91 (4): 433-441.
[154]  193 Zhu F, Zhao LM, Lu GX, et al. Deformation and failure of blast-loaded metallic sandwich panels——experimental investigations. Int J Impact Engng, 2008, 35 (8): 937-951
[155]  194 McKown S, Shen Y, Brookes WK, et al. The quasi-static and blast loading response of lattice structures. International Journal of Impact Engineering, 2008, 35 (8): 795-810
[156]  195 Tilbrook MT, Radford DD, Deshpande VS, et al. Dynamic crushing of sandwich panels with prismatic lattice cores. International Journal of Solids and Structures, 2007, 44 (18-19): 6101-6123
[157]  196 McShane GJ, Radford DD, Deshpande VS, et al. The response of clamped sandwich plates with lattice cores subjected to shock loading. European Journal of Mechanics A/Solids, 2006, 25 (2): 215-229
[158]  197 Radford DD, McShane GJ, Deshpande VS, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading. International Journal of Solids and Structures, 2006, 43 (7-8): 2243-2259
[159]  198 赵桂平, 卢天健. 多孔金属夹层板在冲击载荷作用下的动态响应. 力学学报, 2008, 40 (2): 194-208
[160]  199 宋延泽, 王志华, 赵隆茂等. 泡沫金属子弹冲击下多孔金属夹芯板动力响应研究. 兵工学报, 2011, 32 (1): 1-7
[161]  200 张旭红, 王志华, 赵隆茂. 爆炸载荷作用下铝蜂窝夹芯板的动力响应. 爆炸与冲击, 2009, 29 (4): 356-360
[162]  201 Alwar RS, Adimurthy NK. Non-linear dynamic response of sandwich panels under pulse and shock type excitations. Journal of Sound and Vibration, 1975, 39 (1): 43-54
[163]  202 Mei C, Wentz KR. Large-amplitude random response of angle-ply laminated composite plates. American Institute of Aeronautics and Astronautics Journal, 1982, 20 (10): 1450-1458
[164]  203 Reddy JN. Geometrically nonlinear transient analysis of laminated composite plates. American Institute of Aeronautics and Astronautics Journal, 1983, 21 (4): 621-629
[165]  204 Reddy JN. Dynamic (transient) analysis of layered anisotropic composite material plates. International Journal for Numerical Methods in Engineering, 1983, 19 (2): 237-255
[166]  205 Qiu X, Deshpande VS, Fleck NA. Dynamic response of a clamped circular sandwich plate subject to shock loading. Journal of Applied Mechanics, 2004, 71 (5): 637-645
[167]  206 Deshpande VS, Fleck NA. One-dimensional response of sandwich plates to underwater shock loading. Journal of the Mechanics and Physics of Solids, 2005, 53 (11): 2347-2383
[168]  207 Zhu F, Wang ZH, Lu GX. Analytical investigation and optimal design of sandwich panels subjected to shock loading. Materials and Design, 2009, 30 (1): 91-100
[169]  208 Zhu F, Wang ZH, Lu GX, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading. International Journal of Impact Engineering, 2010, 37 (6): 625-637
[170]  209 Aktay L, Johnson AF, Holzapfel M. Prediction of impact damage on sandwich composite panels. Computational Materials Science, 2005, 32 (3-4): 252-260.
[171]  210 Main JA, Gazonas GA. Uniaxial crushing of sandwich plates under air blast: influence of mass distribution. International Journal of Solids and Structures, 2008, 45 (7-8): 2297-2321
[172]  211 Xue ZY, Hutchinson JW. Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 2003, 45 (4): 687-705
[173]  212 Andrews EW, Moussa NA. Failure mode maps for composite sandwich panels subjected to air blast loading. International Journal of Impact Engineering, 2009, 36 (3): 418-425
[174]  213 Cui XD, Zhao LM, Wang ZH, et al. A lattice deformation based model of metallic lattice sandwich plates subjected to impulsive loading. Int J Solids Struc, 2012, 49 (19-20): 2854-2862
[175]  214 张明华, 赵恒义, 谌河水. 泡沫铝夹芯板动态抗侵彻性能的实验研究. 力学季刊, 2008, 29 (2): 241-247
[176]  215 Fatt HMS, Park KS. Perforation of honeycomb sandwich plates by projectiles. Composites: Part A, 2000, 31 (8): 889-899
[177]  216 Dean J, S-Fallah A, Brown PM, et al. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fiber cores. Composite Structures, 2011, 93 (3): 1089-1095
[178]  217 Goldsmith W, Wang G-T, Li K, et al. Perforation of cellular sandwich plates. International Journal of Impact Engineering, 1997, 19 (5-6): 361-379
[179]  218 Hou WH, Zhu F, Lu GX, et al. Ballistic impact experiments of metallic sandwich panels with aluminum. International Journal of Impact Engineering, 2010, 37 (10): 1045-1055
[180]  219 Hanssen AG, Girardc Y, Olovsson L, et al. A numerical model for bird strike of aluminum foam-based sandwich panels. International Journal of Impact Engineering, 2006, 32 (7): 1127-1144
[181]  220 Buitrago BL, Santiuste C. Modeling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Composite Structures, 2010, 92 (9): 2090-2096.
[182]  221 倪长也, 金峰, 卢天健等. 3 种点阵金属三明治板的抗侵彻性能模拟分析. 力学学报, 2010, 42 (6): 1126-1137
[183]  222 Hause T, Librescu L. Dynamic response of doubly-curved anisotropic sandwich panels impacted by blast loadings. International Journal of Solids and Structures, 2007, 44 (20): 6678-6700
[184]  223 Vonach WK, Rammerstorfer FG, Bathe KJ. Face layer wrinkling in sandwich shells of general configuration. Computational Fluid and Solid Mechanics, 2003, 1-2: 727-731
[185]  224 Hohe J, Librescu L. A nonlinear theory for doubly curved anisotropic sandwich shells with transversely compressible core. International Journal of Solids and Structures, 2003, 40 (5): 1059-1088
[186]  225 Li R, Kardomateas GA, Simitses GJ. Nonlinear response of a shallow sandwich shell with compressible core to blast loading. Journal of Applied Mechanics, 2008, 75 (6): 1-10
[187]  226 Hutchinson JW, He MY. Buckling of cylindrical sandwich shells with metal foam cores. International Journal of Solids and Structures, 2000, 37 (46-47): 6777-6794
[188]  227 Dawson MA, Gibson LJ. Optimization of cylindrical shells with compliant cores. International Journal of Solids and Structures, 2007, 44 (3-4): 1145-1160
[189]  228 Shen JH, Zhao LM, Wang ZH, et al. Experiments on curved sandwich panels under blast loading. International Journal of Impact Engineering, 2010, 37 (9): 960-970
[190]  229 Liu XR, Tian XG, Lu TJ, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores. Composite Structures, 2012, 94 (8): 2485-2493
[191]  230 Fatt MSH, Surabhi H. Blast resistance and energy absorption of foam-core cylindrical sandwich shells under external blast. Composite Structures, 2012, 94 (11): 3174-3185
[192]  231 Jing L, Xi CQ, Wang ZH, et al. Energy absorption and failure mechanism of metallic cylindrical sandwich shells under impact loading. Materials & Design, 2013, 52: 470-480
[193]  232 Jing L, Wang ZH, Zhao LM. Response of metallic cylindrical sandwich shells subjected to projectile impact——experimental investigations. Composite Structures, 2014, 107: 36-47
[194]  233 Jing L, Wang ZH, Zhao LM, et al. Blast resistance of clamped cylindrical sandwich shells with metallic foam cores. Key Engineering Materials, 2013, 535-536: 461-464.
[195]  234 Jing L, Wang ZH, Zhao LM. Dynamic response of cylindrical sandwich shells with metallic foam cores under blast loading——numerical simulations. Composite Structures, 2013, 99: 213-223
[196]  235 Jing L, Wang ZH, Shim VPW, et al. An experimental study of the dynamic response of cylindrical sandwich shells with metallic foam cores subjected to blast loading. International Journal of Impact Engineering, 2014, 71: 60-72
[197]  236 Jing L, Wang ZH, Zhao LM. An approximate theoretical analysis for clamped cylindrical sandwich shells with metallic foam cores subjected to impulsive loading. Composites Part B: Engineering, 2014, 60: 150-157
[198]  237 Jing L, Yang F, Wang ZH, et al. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading. Latin American Journal of Solids and Structures, 2013, 10: 631-645
[199]  13 Olurin OB, Fleck NA, Ashby MF. Deformation and fracture of aluminum foams. Mater Sci Eng A, 2000, 291 (1-2): 136-146
[200]  14 Paul A, Ramamurty U. Strain rate sensitivity of a closedcell aluminum foam. Mater Sci Eng A, 2000, 281 (1-2): 1-7
[201]  15 Tan PJ, Harrigan JJ, Reid SR. Inertia effects in uniaxial dynamic compression of a closed cell aluminum alloy foam. Materials Science and Technology, 2002, 18 (5): 480-488
[202]  16 Kooistra GW, Deshpande VS, Wadley HNG. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater, 2004, 52 (14): 4229-4237
[203]  17 Wadley HNG, Fleck NA, Evans AG. Fabrication and structural performance of periodic cellular metal sandwich structures. Compos Sci Technol, 2003, 63 (16): 2331-2343
[204]  18 Wadley H, Dharmasena K, Chen YC, et al. Compressive response of multilayered pyramidal lattices during under-water shock loading. International Journal of Impact Engineering, 2008, 35 (9): 1102-1114
[205]  19 Deshpande VS, Fleck NA, Ashby MF. Effective properties of the octet-truss lattice material. J Mech Phys Solids, 2001, 49 (8): 1747-1769
[206]  20 Brittain ST, Sugimura Y, Schuelle OJA, et al. Fabrication and mechanical performance of a mesoscale space-filling truss system. Journal of Microelectromechanical Systems, 2001, 40(2): 157-169
[207]  21 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展. 力学进展, 2010, 38(1): 35-52
[208]  22 刘培生. 多孔金属格子材料(点阵材料) 的制造方法. 稀有金属材料与工程(S), 2007, 36 (3): 535-538
[209]  23 张敏, 陈长军, 姚广春. 泡沫铝夹芯板的制备技术. 材料导报, 2008, 22 (1): 85-89
[210]  24 Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Progress Mater Sci, 2001, 46 (6): 559-632
[211]  25 尚金党, 何德坪. 泡沫铝层合梁的三点弯曲变形. 材料研究学报, 2003, 17 (1): 3138
[212]  26 Xue ZY, Hutchinson JW. A comparative study of impulseresistant metal sandwich plates. International Journal of Impact Engineering, 2004, 30 (10): 1283-1305
[213]  27 Hutchinson JW, Xue ZY. Metal sandwich plates optimized for pressure impulses. International Journal of Mechanical Sciences, 2005, 47 (4-5): 545-569
[214]  28 于英华, 杨春红. 泡沫铝夹芯结构的研究现状及发展方向. 机械工程师, 2006, (3): 43-45
[215]  29 Lu TJ, Valdevit L, Evans AG. Active cooling by metallic sandwich structures with periodic cores. Prog Mater Sci, 2005, 50 (7): 789-815
[216]  30 Matsumoto I, Iwaki T, Yanagihara N. Battery electrode. US Patent, 4251603, 1981
[217]  31 Ashby MF, Lu TJ, Metal foams: a survey. Science in China: B, 2003, 46 (6): 521-532
[218]  32 Sosnick B. Process for making foamlike mass of metal. US Patent, 2434775, 1948
[219]  33 Degischer HP, Kriszt B. Handbook of Cellular Metals: Production, Processing, Applications. Vienna: Wiley-VCH, 2002
[220]  34 Andrews EW, Sanders W, Gibson LJ. Compressive and tensile behavior of aluminum foams. Materials Science and Engineering A, 1999, 270 (2): 113-124
[221]  35 Gibson L J. Mechanic behavior of metallic foam. Annual Review of Material Science, 2000, 30: 191-227
[222]  36 Sugimura Y, Meyer J, He MY, et al. On the mechanical performance of closed cell Al alloy foams. Acta Materialia, 1997, 45 (12): 5245-5259
[223]  37 McCullough KYG, Fleck NA, Ashby MF. Toughness of aluminum alloy foams. Acta Mater, 1999, 47 (8): 2331-2344
[224]  38 范天佑. 多胞材料中的缺陷及其对材料力学性能的影响. 2002 年中国材料研讨会特邀报告, 北京, 2002
[225]  39 Warren WE, Kraynik AM. Linear elastic behavior of a lowdensity Kelvin foam with open cells. ASME Journal of Applied Mechanics, 1997, 64 (4): 787-794
[226]  40 Papka SD, Kyriakides S. In-plane crushing of a polycarbonate honeycomb. International Journal of Solids Structure, 1998, 35 (3-4): 239-267
[227]  80 Mukai T, kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta Materialia, 1999, 40 (8): 921-927
[228]  81 Zhao H, Elnasri I, Abdennadher S. An experimental study on the behavior under impact loading of metallic cellular materials. International Journal of Mechanical Sciences. 2005, 47 (4-5): 757-774
[229]  82 Hall IW, Guden M, Yu CJ. Crushing of aluminum closed cell foams: density and strain rate effects. Scripta Materialia, 2000, 43 (6): 515-521.
[230]  83 Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs——a finite element study. International Journal of Impact Engineering, 2003, 28 (2): 161-182
[231]  84 刘耀东, 虞吉林, 郑志军. 惯性对多孔金属材料动态力学行为的影响. 高压物理学报, 2008, 22 (2): 118-124
[232]  85 王鹏飞, 徐松林, 郑航等. 变形模式对多孔金属材料SHPB 实验结果的影响. 力学学报, 2012, 44(5): 928-932
[233]  86 Calladine CR, English RW. Strain and inertia effects in the collapse of two types of energy-absorbing structure. Int J Mech Sci, 1984, 26 (11-12): 689-701
[234]  87 Lehmhus D, Banhart J. Properties of heat-treated aluminum foams. Materials Science and Engineering: A, 2003, 349 (1-2): 98-110
[235]  126 Tae SL, Chang SL, Dai GL. Failure modes of foam core sandwich beams under static and impact loads. Journal of Composite Materials, 2004, 38 (18): 1639-1662
[236]  127 Yu JL, Wang EH, Li JR, et al. Static and low-velocity behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. International Journal of Impact Engineering, 2008, 35 (8): 885-894
[237]  128 Yu JL, Wang X, Wei ZG, et al. Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core. International Journal of Impact Engineering, 2003, 28 (3): 331-347

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133