全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

Y型微通道两相流内部流动特性

DOI: 10.6052/0459-1879-13-228, PP. 209-216

Keywords: 微流控,Y,型微通道,Y,型角度,显微粒子图像测速技术,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用显微粒子图像测速技术、高速度数码显微系统及数值模拟方法研究了Y型微通道内液滴的形成.主要考虑了Y型角度(45°,90°,135°,180°)、两相流量大小等因素的影响.发现在挤压机制中,Y型微通道内分散相液滴的形成主要受到来自连续相的剪切作用,Y型角度越小,分散相所受到的剪切作用越大.在液滴生成过程中,连续相速度剖面呈非对称抛物线型分布.当Y型角度小于180°时,角度的变化对液滴直径大小影响较小,但角度的减小会加快液滴的生成时间.当Y型角度为180°时,生成的液滴体积最大且生成时间最长.毛细数对液滴直径和生成时间的变化同时产生影响,连续相毛细数的增大使得连续相在两相交汇位置处对分散相的作用力更集中,导致分散相更易破裂.

References

[1]  王澎, 陈斌. T型微流控芯片中微液滴破裂的数值模拟. 化工学报, 2012, 64(4): 999-1003 (Wang Peng, Chen Bin. Numerical simulation of micro-droplet breakup in T-shaped micro-fluidic chip. Journal of Chemical Industry and Engineering, 2012, 64(4): 999-1003 (in Chinese))
[2]  Li SB, Ma YG, Zhu CY, et al. Turbulent characteristic of liquid around a chain of bubbles in non-newtonian fluid. Chinese Journal of Chemical Engineering, 2012, 20(5): 883-888
[3]  Shao HW, Lü YC, Wang K, et al. An experimental study of liquid-liquid microflow pattern maps accompanied with mass transfer. Chinese Journal of Chemical Engineering, 2012, 20(1): 18-26
[4]  魏丽娟, 朱春英, 付涛涛, 等. T型微通道内液滴尺寸的实验测定与关联. 化工学报, 2013, 64(2): 517-523 (Wei Lijuan, Zhu Chunying, Fu Taotao, et al. Experimental measurement and correlation of droplet size in T-junction microchannels. Journal of Chemical Industry and Engineering, 2013, 64 (2): 517-523 (in Chinese))
[5]  Garstecki P, Fuerstman, MJ, Stone, HA, et al. Formation of droplets and bubbles in a microfluidic T-junction-Scaling and mechanism of break-up. Lab on a Chip, 2006, 6: 437-446
[6]  Menech MD, Garstecki P, Jousse F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008, 595: 141-161
[7]  Xu JH, Li SW, Tan J, et al. Correlation of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008, 5: 711-717
[8]  Christopher GF, Noharuddin NN, Taylor JA, et al. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Physical Review E, 2008, 78: 036317
[9]  Graaf SVD, Nisisako T, Schro?n CGPH, et al. Lattice boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir, 2006, 22: 4144-4152
[10]  Steegmans MLJ, Schro?n CGPH, Boom RM. Generalised insights in droplet formation at T-junctions through statistical analysis. Chemical Engineering Science, 2009, 64: 3042-3050
[11]  Steegmans MLJ, Schro?n KGPH, Boom RM. Characterization of emulsification at flat microchannel Y junctions. Langmuir, 2009, 25: 3396-3401
[12]  Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel.Chemical Engineering Science, 2006, 61: 7609-7625
[13]  Adzima BJ, Velankar SS. Pressure drops for droplet flows in microfluidic channels. Journal of Micromechanics and Microengineering, 2006, 16(8): 1504-1510
[14]  Zhao YC, Chen GW, Yuan Q. Liquid-liquid two-phase flow patterns in a rectangular microchannel. AIChE Journal, 2006, 52(12): 4052-4046
[15]  Nie ZH, Seo MS, Xu SQ, et al. Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids. Microfluidics and Nanofluidics, 2008, 5: 585-594
[16]  He PY, Barthes-Bièsel D, Leclerc E. Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry. Microfluidics and Nanofluidics, 2010, 9: 293-301
[17]  Tarchichi N, Chollet F, Manceau JF. New regime of droplet generation in a T-shape microfluidic junction. Microfluidics and Nanofluidics, 2013, 14: 45-51
[18]  Murshed SMS, Tan SH, Nguyen NT, et al. Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction.Microfluidics and Nanofluidics, 2009, 6: 253-259
[19]  Cubaud T, Mason TG. Capillary thread and viscous droplets in square microchannels. Physics of Fluids, 2008, 20(5): 053302
[20]  Dessimoz AL, Cavin L, Renken A, et al. Liquid liquid two phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chemical Engineering Science, 2008, 63(16): 4035-4044
[21]  骆广生, 徐建鸿, 李少伟等. 微结构设备内液-液两相流行为研究及其进展. 现代化工, 2006, 26(3): 19-23 (Luo Guangsheng, Xu Jianhong, Li Shaowei, et al. Research and development of two-liquid phase flow in micro-structured devices. Modern Chemical Industry, 2006, 26(3): 19-23 (in Chinese))
[22]  Steijn V, Kreutzer MT, Kleijn CR, et al. μ -PIV study of the formation of segmented flow in microfluidic T-junctions. Chemical Engineering Science, 2007, 62: 7505-7514
[23]  King C, Walsh E, Grimes R. PIV measurements of flow within plugs in a microchannel.Microfluid Nanofluid, 2007, 3: 463-472
[24]  Xu JH, Luo GS, Li SW, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab on a Chip, 2006, 6(1): 131-136
[25]  Cristini V, Tan YC. Theory and numerical simulation of droplet dynamics in complex flows-a review. Lab on a Chip, 2004, 4(4): 257-264
[26]  Thorsen T, Roberts RW, Arnold FH, et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163-4166
[27]  Glawdel T, Elbuken C, Ren CL. Droplet formation in microfluidic T-junction generators operating in the transitional regime: I. Experimental Observations. Physical Review E, 2012, 85 (1): 016322
[28]  Steegmans MLJ, Schro?n KGPH, Boom RM. Microfluidic Y-junctions: a robust emulsification system with regard to junction design. American Institute of Chemical Engineers, 2010, 56(7): 1946-1949
[29]  陈九生, 蒋稼欢. 微流控液滴技术: 微液滴生成与操控. 分析化学, 2012, 40(8): 1293-1300 (Chen Jiusheng, Jiang Jiahuan. Droplet microfluidic technique: Mirodroplets formation and manipulation. Chinese Journal of Analytical Chemistry, 2012, 40(8):1293-1300 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133