全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

由Bezier曲线构造的聚合物熔体剪切黏度模型

DOI: 10.6052/0459-1879-13-163, PP. 313-317

Keywords: 黏度模型,Bezier,曲线,聚合物熔体,剪切黏度,数据拟合

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高聚合物熔体剪切黏度模型的描述精度,提出了一个基于二次Bezier曲线的黏度模型.模型采用分段函数描述,在对数坐标系中,低剪切速率时的牛顿区和高剪切速率时的幂律区采用线性函数,介于二者之间的过渡区采用二次Bezier曲线.通过牛顿区和幂律区的直线延长线构造Bezier曲线的控制多边形,从而保证三段曲线的光滑过渡.模型可以明确给出任意温度下低剪切速率时牛顿区的结束点,以及高剪切速率时幂律区的开始点.拟合算例表明,所提出模型的拟合精度明显高于Cross-Arrhenius黏度模型.

References

[1]  Hassan H, Regnier N, Pujos C, et al. Effect of viscous dissipation on the temperature of the polymer during injection molding filling. Polymer Engineering Science, 2008, 48(6): 1199-1206
[2]  Li YC, Zhang YS, Li DQ. Shrinkage analysis of injection compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials, 2011, 44-47: 1029-1033
[3]  于同敏, 贝海鑫. 微注塑充模流动中的粘性耗散效应. 高分子材料科学与工程, 2012, 28(12): 164-168 (Yu Tongmin, Bei Haixin. Viscous dissipation effects in micro-injection molding filling flow. Polymer Materials Science and Engineering, 2012, 28(12): 164-168 (in Chinese))
[4]  熊爱华, 柳和生, 黄兴元 等. 短玻纤增强聚丙烯复合材料气体辅助注塑成型真三维模拟. 高分子材料科学与工程, 2012, 28(9): 182-186 (Xiong Aihua, Liu Hesheng, Huang Xingyuan, et al. True 3D numerical simulation of gas-assisted injection of short fiber-reinforced PP. Polymer Materials Science and Engineering, 2012, 28(9): 182-186 (in Chinese))
[5]  吴其晔, 巫静安. 高分子材料流变学, 北京:高等教育出版社, 2002 (Wu Qiye, Wu Jing'an. Polymer rheology. Beijing: Higher Education Press, 2002 (in Chinese))
[6]  施法中. 计算机辅助几何设计与非均匀有理B样条. 北京:北京航空航天大学出版社, 1994 (Shi Fazhong. CAGD & NURBS, Beijing: Beijing University of Aeronautics and Astronautics Press, 1994 (in Chinese))
[7]  徐全军, 李德群. 注塑材料流变参数拟合. 塑料科技, 1993, (3):19-24 (Xu Quanjun, Li Dequn. Plastics rheology parameters fitting. Plastics Science and Technology, 1993, (3):19-24 (in Chinese))
[8]  王松杰. 注射成型过程中非牛顿塑料熔体的流变特性.上海塑料, 2003, (2):12-16 (Wang Songjie. Rheological behaviour of non-Newtonian plastic melt in injection molding. Shanghai Plastics, 2003, (2):12-16 (in Chinese))
[9]  现代应用数学手册 编委会. 运筹学与最优化理论卷. 北京:清华大学出版社, 1998 (Contemporary Applied Mathematics Handbool Editor Committee. Operations Research and Optimality Theory. Beijing: Tsinghua University Press, 1998 (in Chinese))
[10]  康永刚, 张秀娥. 非定常微分型黏弹性本构模型.力学学报, 2012, 44(2): 456-459 (Kang Yonggang, Zhang Xiu'e. The non-stationary differential constitutive models of viscoelesticity. Chinese Journal of Theoretical and Applied Mechanics , 2012, 44(2): 456-459 (in Chinese))
[11]  刘双兵, 刘海湖. 亚网格尺度稳定化有限元求解不可压黏性流动. 力学学报, 2011, 43(6):1083-1096 (Liu Shangbing, Liu Haihu. Subgrid scale stabilized finite element for solution of incompressible viucous flows. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1083-1096 (in Chinese))
[12]  Pantani R. Validation of a model to predict birefringence in injection molding. European Polymer Journal, 2005, 41(7): 1484-1492
[13]  Koszkul J, Nabialek J. Viscosity models in simulation of the filling stage of the injection molding process. Journal of Materials Processing Technology , 2004, 157(2): 183-187
[14]  杨晓东, 刘保臣, 刘春太等. 高分子聚合物熔体Cross 黏度模型的改进. 高分子材料科学与工程, 2010, 26(11): 172-174 (Yang Xiaodong, Liu Baochen, Liu Chuntai, et al. Modified Cross viscosity model for polymer melt. Polymer Materials Science and Engineering, 2010, 26(11): 172-174 (in Chinese))
[15]  曹伟. 黏性不可压缩流体流动前沿的数值模拟. 力学学报, 2004, 36(5):583-588 (Cao Wei. Numerical simulation for the flow front of viscous incompressible fluid. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5):583-588 (in Chinese))
[16]  张响, 李倩, 石凡 等. 基于SPH方法的微注射成型数值模拟.化工学报, 2012, 63(1): 157-162 (Zhang Xiang, Li Qian, Shi Fan, et al. Micro injection molding simulation based on SPH method. Journal of Chemical Industry and Engineering , 2012, 63(1): 157-162 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133