全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

分数阶理论下实心球体受热冲击作用的渐进分析

DOI: 10.6052/0459-1879-13-287, PP. 248-254

Keywords: 热冲击,分数阶广义热弹性理论,耦合效应,延迟效应,渐进分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于分数阶广义热弹性理论,针对实心球体在外表面受均匀热冲击作用下的一维广义热弹性问题进行研究分析.利用热冲击的瞬时特征,借助于Laplace正、反变换技术及柱函数的渐进性质,推导了热冲击作用周期内位移场、温度场和应力场的渐进表达式.通过计算,得到了不同传热能力下受热冲击作用时热波、热弹性的传播规律以及位移场、温度场及应力场的分布规律.结果表明分数阶参数取值的不同,热波、热弹性波的传播以及各物理场的分布均有所不同,分数阶参数可视为延迟时间的影响因子,通过改变延迟效应对热弹性行为的影响来改变热冲击的作用效果.

References

[1]  过增元. 国际传热研究前沿——微细尺度传热. 力学进展, 2000, 30(1): 1-6 (Guo Zengyuan. Frontier of heat transfer—Microscale heat transfer. Advances in Mechanics, 30(1): 1-6 (in Chinese))
[2]  Herwig H, Beckert K. Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transfer, 2000, 36(5): 387-392
[3]  王海东, 刘锦辉, 过增元等. 金属纳米薄膜中稳态非傅里叶导热的实验. 科学通报, 2012, 57(19): 1794-1799 (Wang Haidong, Liu Jinhui, Guo Zengyuan, et al. Non-Fourier heat conduction study for steady states in metallic nanofilms. Chinese Science Bulletin, 2012, 57(19): 1794-1799 (in Chinese))
[4]  Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309
[5]  Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972, 2(1): 1-7
[6]  Green AE, Naghdi PM. Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31(3): 189-208
[7]  Youssef HM. Theory of two-temperature thermoelasticity without energy dissipation. Journal of Thermal Stresses, 2011, 34(2): 138-146
[8]  王颖泽, 宋新南. 基于热质理论的广义热弹性动力学模型. 物理学报, 2012, 61(23): 234601-5 (Wang Yingze, Song Xinnan. Dynamic model of generalized thermoelasticity based on thermal mass theory. Acta Physica Sinica, 2012, 61(23): 234601-5 (in Chinese))
[9]  Possikhin YA, Shitikova MV. Application of fractional calculus to dynamic problems of linear and non linear hereditary mechanics of solids. Applied Mechanics Reviews, 1997, 50(1): 15-67
[10]  Youssef HM. Theory of fractional order generalized thermoelasticity. ASME Journal of Heat Transfer, 2010, 132(6): 061301-7
[11]  Sherief HH, El-Sayed AMA, Abd El-Latief AM. Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 2010, 47(2): 269-275
[12]  Youssef HM, Al-Lehaibi EA. Fractional order generalized thermoelastic half-space subjected to ramp-type heating. Mechanics Research Communications, 2010, 37(5): 448-452
[13]  Kothari S, Mukhopadhyay S. A problem on elastic half space under fractional order theory of thermoelasticity. Journal of Thermal Stresses, 2011, 34(7): 724-739
[14]  Sarkar N, Lahiri A. Effect of fractional parameter on plane waves in a rotating elastic medium under fractional order generalized thermoelasticity. International Journal of Applied Mechanics, 2012, 4(3): 1250030-20
[15]  Sherief HH, Abd El-Latief AM. Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 2013, 74: 185-189
[16]  El-Karamany A S, Ezzat, M A. Thermal shock problem in generalized thermo-viscoelasticity under four theories. International Journal of Engineering Science, 2004, 42(7): 649-671
[17]  王颖泽, 张小兵, 宋新南. 圆柱外表面受热冲击问题的广义热弹性分析. 力学学报, 2012, 44(2): 317-325 (Wang Yingze, Zhang Xiaobing, Song Xinnan. Research on generalized thermoelastic problems of a solid cylinder subjected to thermal shock. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 317-325 (in Chinese))
[18]  王颖泽, 张小兵, 刘栋. 轴对称平面应变问题的广义热弹性解. 中国科学:物理学·力学·天文学, 2013, 43(8): 956-964 (Wang Yingze, Zhang Xiaobing, Liu Dong. Generalized thermoelastic solutions for the axisymmetric plane strain problem. Scientia Sinica Physica, Mechanica {& Astronomica, 2013, 43(8): 956-964 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133