全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

乘员股骨在轴向压力-弯矩下的损伤生物力学机理研究

DOI: 10.6052/0459-1879-13-282, PP. 465-474

Keywords: 汽车前碰撞,生物力学,乘员股骨骨折,损伤机理,有限元方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

汽车前碰撞事故中在冲击力作用下乘员股骨经常产生骨折创伤.为研究乘员股骨在不同的轴向压力-弯矩作用下的损伤机理及其耐受限度值,首先建立了一个较为精细的50百分位乘员的坐姿下肢有限元模型,并通过模拟股骨动态三点弯曲及下肢的轴向膝部冲击实验对模型的有效性进行了验证.在此基础上,针对股骨在轴向压力-弯矩载荷下的断裂失效分别进行了曲梁力学模型分析及有限元虚拟实验研究.结果表明股骨骨折位置依赖于膝部轴向压力及弯矩的载荷大小的变化,在预加载弯矩从0增加到676Nm时,股骨失效部位由股骨颈部转移到股骨干末端区域;失效部位发生在颈部及股骨干时的最大力矩分别为285296Nm和381443Nm.股骨损伤机理的分析结果阐释了在膝部轴向冲击实验中失效部位位于股骨颈部,而在汽车前碰撞事故中仍有大量的股骨干骨折出现的原因.

References

[1]  Hoek E, Brown ET. Strength of jointed rock masses. Geotechnique, 1983, 33(3): 187-223
[2]  Hoek E, Brown ET. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8): 1165-1186
[3]  Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow. Bulletin of the Earthquake Research Institute, University of Tokyo, 1966, 44: 215-232
[4]  Melvin JW, Richard LS, Alem NM., et al. Impact response and tolerance of the lower extremities. SAE Paper Number 751159, 1975
[5]  Mogi K. Fracture and flow of rocks under high trixial compression. Journal of Geophysical Research, 1971, 76: 1255-1269
[6]  Morgan RM, Nichols H, Marcus JH, et al. Human cadaver and hybrid III responses to axial impacts of the femur. In: Processing of International IRCOBI Conference on the Biomechanics of Impacts. Bron, IRCOBI, 1990. 21-35
[7]  Rupp JD, Reed MP, Chris AV, et al. The torelance of the human hip to dynamic knee loading. Stapp Car Crash Journal, 2002, 46: 211-228
[8]  Chang CY, Rupp JD, Kikuchi N, et al. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. Stapp Car Crash Journal, 2008, 52: 475-504
[9]  States JD. Adult occupant injuries of the lower limb. SAE Paper Number 861927. 1986
[10]  Zienkiewicz OC, Pande GN. Some useful forms of isotropic yield surface for soil and rock mechanics. In: Pande GW. Finite Elements in Geomechnaics. London: Wiley, 1977. 179-190
[11]  Lade PV, Wang Q. Analysis of shear banding in true triaxial tests on sand. Journal of Engineering Mechanics, ASCE, 2001, 127(8): 762-768
[12]  Ivasson BJ, Genovese D, Crandall JR, et al. The tolerance of the femoral shaft in combined axial compression and bending loading. Stapp Car Crash Journal, 2009, 53: 251-290
[13]  Untaroiu CD. A numerical investigation of mid-femoral injury tolerance in axial compression and bending loading. International Journal of Crashworthiness, 2010, 15(1): 83-92
[14]  杨济匡, 方海峰. 人体下肢有限元动力学分析模型的建立和验证. 湖南大学学报(自然科学版), 2005, 32(5): 31-36 (Yang Jikuang, Fang Haifeng. Development and validation of a FE model of lower extremity for dynamics analysis. Journal of Hunan University (Natural Sciences), 2005,32(5):31-36 (in Chinese))
[15]  韩勇, 杨济匡, 李凡,等. 汽车-行人碰撞中人体下肢骨折的有限元分析. 吉林大学学报(工学版), 2011, 41(1): 6-11 (Han Yong, Yang Jikuang, Li Fan, et al. Finite element analysis of lower extremity fractures in vehicle-pedestrian collision. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(1):6-11 (in Chinese))
[16]  Yong H, Yang JK, Mizuno K. Virtual reconstruction of long bone fracture in car to pedestrian collisions using multibody system and finite element method. Chinese Journal of Mechanical Engineering, 2011, 24(6): 1045-1055
[17]  张冠军, 曹立波, 官凤娇 等. 基于汽车与行人碰撞载荷特点的下肢长骨建模. 力学学报, 2011, 43(5): 939-947 (Zhang Guanjun, Cao Libo, Guan Fengjiao, et al. Development and validation of FE models for long bones of lower limb in vehicle-to-pedestrian crashes. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):939-947 (in Chinese))
[18]  Liu MD, Carter JP. General strength criterion for geomaterials. International Journal of Geomechanics, 2003, 3: 253-259
[19]  Matsuoka H, Nakai T. Stress deformation and strength characteristics of soil under three different principal stresses, In: Proc. of JSCE, 1974, 232: 59-70
[20]  Robbins DH, Schneider LW, Snyder RG, et al. Seated posture of vehicle occupants. SAE Paper Number 831617, 1983
[21]  贺毅. 膝关节的生物力学. 医用生物力学, 1998, 13(1): 58-65 (He Yi. Biomechanics of knee joint. Journal of Medical Biomechanics, 1998, 13(1): 58-65 (in Chinese))
[22]  Yu MH. Unified Strength Theory and its Applications. Berlin, Heidelberg: Springer, 2004
[23]  Livermore Software Technology Corporation, LS-DYNA, Keyword User's Manual. Version 971. Livermore, CA, 2007
[24]  Takahashi Y, Kikuchi Y, Konosu A, et al. Development and validation of the finite element model for the human lower limb of pedestrians. Stapp Car Crash Journal, 2000, 44: 335-355
[25]  Viano DC. Biomechanics of bone and tissue: A review of material properties and failure characteristics. SAE Paper Number 861923, 1986
[26]  Mente PL, Lewis JL. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. Journal of Orthopaedic Research, 1994, 12(5): 637-647
[27]  Anderson AE, Peters CL, Benjamin DT, et al. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. Journal of Biomechanical Engineering, 2005, 127: 364-373
[28]  Linde F, Hvid I, Pongsoipetch B. Energy absorptive properties of human trabecular bone specimens during axial compression. Journal of Orthopaedic Research, 1989, 7(3): 432-439
[29]  Repo RU, Finlay JB. Survival of articular cartilage after controlled impact. The Journal of Bone and Joint Surgery, 1977, 59-A(8): 1068-1076
[30]  Dakin GJ, Arbelaez RA, Molz FJ, et al. Elastic and viscoelastic properties of the human pubic symphysis joint: Effects of lateral impact loading. Journal of Biomechanical Engineering, 2001, 123: 218-226
[31]  路德春. 基于广义非线性强度理论的土的应力路径本构模型. [博士论文]. 北京: 北京航空航天大学, 2006 (Lu Dechun. A constitutive model for soils considering complex stress paths based on the generalized nonlinear strength theory. [PhD Thesis]. Beijing: Beihang University, 2006 (in Chinese)).
[32]  路德春, 姚仰平, 邹博. 广义非线性强度理论体系. 岩土力学, 2007, 28(10): 2009-2016 (Lu Dechun, Yao Yangping, Zou Bo. System of generalized nonlinear strength theory. Rock and Soil Mechanics, 2007, 28(10): 2009-2016 (in Chinese))
[33]  Du Xiuli, Lu Dechun, Gong Qiuming, et al. A non-linear unified strength criterion for concrete under 3-D stress states. Journal of Engineering Mechanics, ASCE, 2010, 136(1): 51-59
[34]  Yu MH, Zan YW, Gao J. A unified strength criterion for rock material. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(8): 975-989
[35]  Launay P, Gachon H. Strain and ultimate strength of concrete under triaxial stresses. Special Publication SP-34, Journal of American Concrete Institute, 1970, 1: 269-282
[36]  Lade PV, Musante HM. Three dimensional and strength characteristics of remolded clay. Journal of the Geotechnical Engineering Division, 1978, 104(2): 193-209
[37]  Toyota H, Nakamura K, Sramoon W. Failure criterion of unsaturated soil considering tensile stress under three-dimensional stress conditions. Soils and Foundations, 2004, 44(5): 1-13
[38]  Butler DL, Kay MD, Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tenden and knee ligaments. Journal of Biomechanics, 1986. 19(6): 425-432
[39]  Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clinical Orthopaedics & Related Research, 1990, 252: 19-31
[40]  Hewitt J, Guilak F, Richard G, et al. Regional material properties of the human hip joint capsule ligaments. Journal of Orthopaedic Research, 2001, 19(3): 359-364
[41]  Untaroiu C, Darvish K, Crandall J. et al. A finite element model of the lower limb for simulating pedestrian impacts. Stapp Car Crash Journal, 2005, 49: 157-181
[42]  Quapp KM, Weiss JA, Material characterization of human medial collateral ligament. Journal of Biomechanical Engineering, 1998, 120: 757-762
[43]  Mo FH, Arnoux PJ, Cesari D, et al. The failure modelling of knee ligaments in the finite element model. International Journal of Crashworthiness, 2012, 17(6): 630-636
[44]  Snedeker JG, Muser MH, Walz FH. Assessment of pelvis and upper leg injury risk in car-pedestrian collisions: Comparison of accident statistics, impactor tests and a human body finite element model. Stapp Car Crash Journal, 2003, 47: 437-457
[45]  Funk JR, Kerrigan JR, Crandall JR. Dynamic bending tolerance and elastic plastic material properties of the human femur. In: Proceedings of the 48th Annual Proceedings Association for the Advancement of Automotive Medicine. Barrington, USA, September 13-15, 2004. 215-233
[46]  Antoine S, Jolivet E, Quijano S, et al. Distribution and variability study of the femur cortical thickness from computer tomography. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(sup1): 1-19
[47]  You MQ. True-triaxial strength criteria for rock. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 115-127
[48]  Powell WR, Steven JO, Sunder HA, et al. Cadaver femur responses to longitudinal impacts. SAE Paper Number 751160,1975
[49]  Willam KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete. In: International Association for Bridge and Structural Engineering Seminar on "Concrete Structure Subjected to Triaxial Stresses", 19th International Association for Bridge and Structural Engineering. Italy, Bergamo, 1975, 5: 1-30
[50]  Lade PV, Duncan JM. Elasto-plastic stress-strain theory for cohesionlesssoil. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(10): 1037-1053
[51]  lade PV, Kim MK. Single hardening constitutive model for soil, rock and concrete. International Journal of Solids and Structures, 1995, 32(14): 1963-1978
[52]  姚仰平, 路德春, 周安楠等. 广义非线性强度理论及其变换应力空间. 中国科学E辑, 2004, 34(11): 1283-1299 (Yao Yangping, Lu Dechun, Zhou Annan, et al. Generalized non-linear strength theory and transformed stress space. Science in China Ser. E, 2004, 47(6): 691-709 (in Chinese))
[53]  Zhang LY. A generalized three-dimensional Hoek-Brown strength criterion. Rock Mechanics and Rock Engineering, 2008, 41: 893-915
[54]  Priest SD. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mechanics and Rock Engineering, 2005, 38(4): 299-327
[55]  Jiang H, Xie YL. A new three-dimensional Hoek-Brown strength criterion. Acta Mechanica Sinica, 2012, 28(2): 393-406

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133