全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

N-S方程基于投影法的特征线算子分裂有限元求解

DOI: 10.6052/0459-1879-13-253, PP. 369-381

Keywords: 非定常不可压纳维-斯托克斯方程,投影法,特征线算子分裂有限元法,多步格式

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种求解非定常不可压缩纳维-斯托克斯方程(N-S方程)的新型有限元法基于投影法的特征线算子分裂有限元法.在每一个时间层上将N-S方程分裂成扩散项、对流项、压力修正项.对流项采用多步显式格式,且在每一个对流子时间步内采用更加精确的显式特征线-伽辽金法进行时间离散,空间离散采用标准伽辽金法.应用此算法对平面泊肃叶流、方腔流和圆柱绕流进行数值模拟,所得结果与基准解符合良好.尤其对于Re=10000的方腔流,给出了方腔中分离涡发展和运动的计算结果,并发现在该雷诺数下存在周期解,表明该算法能较好地模拟流体流动中的小尺度物理量以及流场中分离涡的运动.

References

[1]  Hannani SK, Stanislas M, Dupont P. Incompressible Navier-Stokes equations with SUPG and GLS formulations-A comparison study. Computer Methods in Applied Mechanics and Engineering, 1995, 124: 153-170
[2]  Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics and Computation, 1968, 22: 745-762
[3]  王坪,田振夫. 基于投影法求解不可压缩流的高精度紧致格式.工程数学学报, 2010, 27(1): 25-232 (Wang Ping, Tian Zhenfu. A projection-based high-order compact scheme for solving incompressible flow. Chinese Journal of Engineering Mathematics, 2010, 27(1): 25-232 (in Chinese))
[4]  Kim J, Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 1985, 59: 308-323
[5]  Donea J, Giulianli S, Laval H. Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Computer Methods in Applied Mechanics and Engineering, 1982, 30(1): 53-73
[6]  Brown DL, Cortze R, Minion ML. Accurate projection methods for incompressible Navier-Stokes equations. Journal of Computational Physics, 2001, 168: 464-499
[7]  刘淼儿, 任玉新, 张涵信. 求解不可压Navier-Stokes方程的三阶精度投影方法. 清华大学学报, 2005, 45(2): 285-288 (Liu Miaoer, Ren Yuxin, Zhang Hanxin. Third-order projection method for solving the incompressible Navier-Stokes equations. Journal of Tsinghua University (Science and Technology), 2005, 45(2): 285-288 (in Chinese))
[8]  Ganesan S. An operator-splitting Galerkin/SUPG finite elment method for population balance equations: Stability and convergence. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(6):1447-1465
[9]  Wang X, Ouyang J. Time-related element-free Taylor-Galerkin method with non-splitting decoupling process for incompressible steady flow. International Journal for Numerical Method in Fluids, 2012, 68(7): 839-855
[10]  Ding DY, Wu SQ. Direct numerical simulation of turbulent flow over backward-facing at high Reynolds numerical. Science China Technological Science, 2012, 55(11): 3213-3222
[11]  Wang DG, Wang HJ, Xiong JH, et al. Characteristic-based operator-splitting finite element method for Navier-Stokes equations. Science China Technological Science, 2011, 54(8):2157-2166
[12]  Malan AG, Lewis RW. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials. International Journal for Numerical Methods in Engineering, 2011, 87(1-5): 412-423
[13]  林建忠,阮晓东,陈邦国等. 流体力学.北京:清华大学出版社,2005 (Lin Jianzhong, Ruan Xiaodong, Chen Bangguo, et al. Fluid Mechanics. Beijing: Tsinghua University Press, 2005 (in Chinese))
[14]  韩向科,钱若军,袁行飞等. 改进的基于特征线理论的流体力学有限元法.西安交通大学学报, 2011, 45(7): 112-117 (Han Xiangke, Qian Ruojun, Yuan Xingfei, et al. Improved characteristic-based split finite element method for fluid dynamics. Journal of Xian Jiaotong University, 2011, 45(7): 112-117 (in Chinese))
[15]  Hundsdorfer W, Mozartova A, Spijker MN. Stepsize restrictions for boundedness and monotonicity of multistep methods. Journal of Scientific Computing, 2012, 50(2): 265-286
[16]  章本照.流体力学中的有限元方法. 北京:机械工业出版社, 1984 (Zhang Benzhao, The Finite Element Method in Fluid Dynamics. Beijing: China Machine Press, 1984 (in Chinese))
[17]  Li X, Han X. An iterative stabilized fractional step algorithm for numerical solution of incompressible N-S equations. International Journal for Numerical Methods in Fluids, 2005, 49(4): 395-416
[18]  Nithiarasu P. An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering, 2003, 66(10): 1815-1845
[19]  Li X, Duan Q. Meshfree iterative stabilized Taylor-Galerkin and characteristic-based split (CBS) algorithms for incompressible N-S equations. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44): 6125-6145
[20]  Liu H, Fu DX, Ma YW. Upwind compact method and dirct numerical simulation of driven flow in a square cavity. Science in China(Series A), 1993, 23(6): 657-665
[21]  Lin LS, Chang HW, Lin CA. Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Computers & Fluids, 2013, 80: 381-387
[22]  Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 1982, 48(3): 387-411
[23]  Bruneau CH, Saad M. The 2D lid-driven cavity problem revisited. Computer and Fluids, 2006, 35(3): 326-348
[24]  詹昊,李万平,方秦汉等.不同雷诺数下圆柱绕流仿真计算.武汉理工大学学报, 2008, 30(12): 129-132 (Zhan Hao, Li Wanping, Fang Qinhan, et al. Numerical simulation of the flow around a circular cylinder at varies Reynolds number. Journal of Wuhan University of Technology, 2008, 30(12): 129-132 (in Chinese))
[25]  Xu S, Wang ZJ. An immersed interface method for simulating the interaction of a fluid with moving boundaries. Journal of Computational Physics, 2006, 216(2): 454-493
[26]  Harichandan AB, Roy A .Numerical investigation of low Reynolds number flow past two and three circular cylinder using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 2010, 31: 154-171

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133