Conlisk AT. Modern helicopter aerodynamics. Annual,Rev Fluid,Mech, 1997: 515-567
[2]
Zhao QJ, Xu GH. New hybrid method for predicting the flow fields of helicopter rotors. Journal of Aircraft, 2006, 43(2): 372-380
[3]
Chen PC, Samarth B. ZONA6 versus the Doublet-Lattice method for unsteady aerodynamics on lifting surfaces. Journal of Aircraft, 2012, 48(3): 966-968
[4]
孙茂,王家禄,连淇祥. 等速上仰翼型分离流动结构的研究. 力学学报,1992, 24(5): 517-521 (Sun Mao, Wang Jialu, Lian Qixiang. A study of the flow structure around a constant-rate pitching airfoil. Acta Mechanics Sinica, 1992, 24(5): 517-521 (in Chinese))
[5]
Johnson W. Rotorcraft aerodynamics models for comprehensive analysis. In: Proc. of the 54th American Helicopter Society Annual Forum, Washington DC, 1998
[6]
Petot D. Toward a unified lift model for use in rotor blade stability analysis. Journal of the American Helicopter Society, 1985, 30(3): 32-42
[7]
Leishman JG, Beddoes TS. A generalized model for unsteady airfoil behavior and dynamic stall using the indicial method. In: Proc. of the 42nd AHS Annual Forum, Washington DC, 1986, 243-265
[8]
Garelick M, Engineer S. GenHel rotor blade airfoil unsteady aerodynamic model. In: Proc. of the 68th American Helicopter Society Annual Forum, Fort Worth, Texas, 2012
[9]
McCroskey W J, Carr L W, McAlister K W. Dynamic stall experiments on oscillating airfoil. AIAA Journal, 1976, 14(1): 57-63
[10]
McAlister KW, Carr LW, McCroskey WJ. Dynamic stall experiments on the NACA 0012 airfoils. NASA Technical Paper, Moffett Field, California: Scientific and Technical Information Office, 1978
[11]
Rhee MJ. A study of dynamic stall vortex development using two-dimensional data from the AFDD oscillating wing. NASA/TM, Moffett Field, California, 2002
[12]
Leishman JG, Beddoes TS. A semi-empirical model for dynamic stall. Journal of the American Helicopter Society, 1989, 34(3): 3-17
[13]
Johnson W. CAMRAD II Components Theory, Vol. II. Technical Report Release 3.2, Johnson Aeronautics, Palo Alto, California, 1999