全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2014 

一种考虑相关性的概率-区间混合不确定模型及结构可靠性分析

DOI: 10.6052/0459-1879-14-025, PP. 591-600

Keywords: 混合结构可靠性,相关性,不确定性,区间,凸模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种考虑相关性的概率-区间混合不确定性模型及结构可靠性分析方法,能够处理变量之间具有相关性的混合可靠性分析问题.分别针对概率变量,概率区间变量及区间变量定义了相关角的概念,用以定量描述变量之间的相关性;通过仿射坐标,将相关变量转换为独立变量;给出了其可靠性分析模型,并构建了一高效求解方法获得其可靠性指标和失效概率区间;最后通过分析两个数值算例,验证了方法的有效性.

References

[1]  Guo J, Du XP. Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J, 2007, 45(9): 2337-2349
[2]  Hasofer AM, Lind NC. Exact and invariant second-moment code format. ASME J Eng Mech Div, 1974, 100: 111-121
[3]  Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Comput Struct, 1978, 9(5): 489-494
[4]  Fiessler B, Rackwiyz R, Neumann H. Quadratic limit states in structural reliability. Journal of the Engineering Mechanics Division, 1979, 105(4): 661-676
[5]  Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety. ASME J Eng Mech Div., 1981, 107(6): 1227-1238
[6]  Breitung KW. Asymptotic approximation for multinormal integrals. ASCE J Eng Mech, 1984, 110(3): 357-366
[7]  Breitung KW. Asymptotic Approximation for Probability Integrals. Berlin: Springer-Verlag, 1994
[8]  Rubinstein RY, Kroese DP. Simulation and the Monte-Carlo Method. 2nd edn. New York: Wiley, 2007
[9]  Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters. Comput Meth Appl Mech Eng , 1993, 104: 187-209
[10]  郭书祥, 吕震宙. 结构可靠性分析的概率和非概率混合模型.机械强度 2002, 244): 524-526 (Guo Shuxiang, Lü Zhenzhou. Hybrid probabilistic and non-probabilistic model of structural reliability. J Mech Strength, 2002, 24(4): 524-526 (in Chinese))
[11]  程远胜, 钟玉湘, 曾广武. 基于概率和非概率混合模型的结构鲁棒设计方法. 计算力学学报. 2005, 22(4), 501-505 (Cheng Yuansheng, Zhong Yuxiang, Zeng Guangwu. Structural robust design based on hybrid probabilistic and non-probabilistic models. Chin J Comput Mech, 2005, 22(4), 501-505 (in Chinese))
[12]  Luo YJ, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model. Comput Struct, 2009, 87(21-22): 1408-1415
[13]  尼早, 邱志平. 结构系统概率-模糊-非概率混合可靠性分析. 南京航空航天大学学报. 2010, 42(3): 272-277 (Ni Zao, Qiu Zhiping. Hybrid probabilistic fuzzy and non-probabilistic reliability analysis on structural system. Journal of Nanjing University of Aeronautics m & Astronautics, 2010, 42(3): 272-277 (in Chinese))
[14]  Qiu ZP, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems. Int. J. Solids Struct., 2008, 45: 2850-2860
[15]  Du XP, Sudjianto A, Huang BQ. Reliability-based design with the mixture of random and interval variables. In: ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2003), Chicago, IL, USA; 2005
[16]  Du XP. Interval reliability analysis. In: ASME 2007 Design Engineering Technical Conference and Computers and Information in Engineering Conference (DETC2007), Las Vegas, NV, USA, 2007
[17]  Jiang C, Lu GY, Han X, et al. A new reliability analysis method for uncertain structures with random and interval variables. Int. J. Mech. Mater Des., 2012, 8: 169-182
[18]  Jiang C, Han X, Li WX, et al. A hybrid reliability approach based on probability and interval for uncertain structures. ASME J. Mech. Des., 2012, 134: 1-11
[19]  Der Kiureghian A, Liu PL. Structural reliability under incomplete probability information. [Dessertation] University of California, Berkeley, January 1985
[20]  Der Kiureghian A, Liu PL. Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1986, 1(2): 105-112
[21]  贡金鑫. 工程结构可靠度计算方法. 大连: 大连理工大学出版社, 2003 (Gong Jinxin. Computational Methods for Reliability of Engineering Structures. Dalian: Dalian University of Technology Press, 2003 (in Chinese))
[22]  赵国藩, 王恒栋. 广义随机空间内的结构可靠度实用分析方法.大连理工大学, 土木工程学报. 1996, 29(4): 47-51 (Zhao Guofan, Wang Hengdong A practical analysis method for reliability of structures in generalized random space. China Civil Engineering Journal, 1996, 29(4): 47-51 (in Chinese))
[23]  李云贵, 赵国藩. 广义随机空间内的一次可靠度分析方法.大连理工大学学报. 1993, 33(1): 1-5 (Li Yungui, Zhao Guofan. Method for structure reliability analysis in generalized random space. Journal of Dalian University of Technology, 1993, 33(1): 1-5 (in Chinese))
[24]  Ben-Haim Y, Convex models of uncertainty in radial pulse buckling of shells. ASME J. Appl. Mech., 1993, 60(3): 683
[25]  Elishakoff I, Elisseeff P, Glegg SAL. Non-probabilistic convex- theoretic modeling of scatter in material properties. AIAA J., 1994, 32: 843-849
[26]  郭书祥, 吕震宙. 结构的非概率可靠性方法和概率可靠性方法的比较.应用力学学报. 2003. 20(3): 107-110 (Guo Shuxiang, Lü Zhenzhou. Comparison between the non-probabilistic and probabilistic reliability methods for uncertain structure design. Chinese Journal of Applied Mechanics, 2003, 20(3): 107-110 (in Chinese))
[27]  罗阳军, 亢战, Li Alex. 基于凸模型的结构非概率可靠性指标及其求解方法研究.固体力学学报. 2011, 32(6): 646-654 (Luo Yangjun, Kang Zhan, Li Alex. Study on structural non-probabilistic reliability index under convex models and its solution methods. Chinese Journal of Solid Mechanics, 2011, 32(6): 646-654 (in Chinese))
[28]  Jiang C, Han X, Lu GY, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Method. Appl. M., 2011, 200(33-36): 2528-2546
[29]  Jiang C, Zhang QF, Han X. A non-probabilistic structural reliability analysis method based on a multidimensional parallelepiped convex model. Acta Mechanica, 2013, 10.1007/s00707-013-0975-2
[30]  Jiang C, Zhang QF, Han X. Multidimensional parallelepiped model-A new type of non-probabilistic convex model for structural uncertainty quantification. Int J Numer Meth Eng, 2013 (submitted)
[31]  Ayres Jr. F. Schaum's Outlines of Theory and Problems of Projective Geometry. New York: McGraw-Hill Book Company, 1968
[32]  Madsen HO, Krenk S, Lind NC. Methods of Structural Safety. Englewood Cliffs: Prentice-Hall, 1986
[33]  Zhang Y, der Kiureghian A. Two improved algorithms for reliability analysis. Reliability and optimization of structural systems, In: Proceedings of the Sixth IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems, Assisi, Italy, 1995
[34]  Yuan YX, Sun WY. Optimization Theories and Methods. Beijing: Scientific Press, 2005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133