全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

基于圆筒模型的热障涂层安定分析

DOI: 10.6052/0459-1879-15-073, PP. 779-788

Keywords: 热障涂层,界面,圆筒模型,安定分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

热载荷作用下,由于热障涂层(thermalbarriercoatings,TBCs)各层材料的热不匹配以及材料参数的温度相关等因素,会使热障涂层界面区域存在复杂的应力应变场,影响系统安定性,并导致涂层开裂和剥落.将热障涂层外凸和内凹微观界面结构简化为多层圆筒模型,借助经典机动安定定理,利用特雷斯卡(Tresca)屈服准则和增量破坏准则处理对时间的积分问题,避免了常规安定性分析的数学规划问题,建立了热障涂层安定极限分析方法,将材料屈服强度随温度变化关系简化为双线性关系,利用补偿变换的方法简化求解过程,对典型热障涂层安定性进行了研究.结果表明,利用基于圆筒的安定极限分析方法,能够方便求解安定极限,便于工程应用;热障涂层安定极限值明显高于弹性设计值,且界面外凸区域安定极限高于内凹区域极限值,结构首先在内凹处失效;圆筒模型基体曲率和涂层厚度越大,结构安定极限越高,分析结果与试验结果一致;所建立的热障涂层安定分析方法,对进一步研究考虑蠕变因素影响的热障涂层安定性具有重要意义.

References

[1]  朱建国, 谢惠民, 刘占伟. 热障涂层力学性能的试验测试方法研究进展. 力学学报,2013,45:45-60 (Zhu Jianguo,Xie Huimin, Liu Zhanwei. Research progress on the experimental measurement methods of mechanical properties of thermal barrier coatings. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45:45-60(in Chinese))
[2]  周益春, 刘奇星, 杨丽 等. 热障涂层的破坏机理与寿命预测. 固体力学学报, 2010, 31: 504-531 (Zhou Yichun, Liu Qixing, Yang Li, et al. Failure mechanisms and life prediction of thermal barrier coatings. Chinese Journal of Solid Mechanics, 2010, 31: 504-531 (in Chinese))
[3]  胡浩炬, 张建宇, 杨晓光等.等离子热障涂层失效机理的数值分析研究.航空动力学报, 2010, 25: 1085-1091 (Hu Haoju, Zhang Jianyu, Yang Xiaoguang, et al. Numerical study of failure mechanisms on plasma sprayed thermal barrier coatings. Jourmal of Aerospace Power, 2010, 25: 1085-1091 (in Chinese))
[4]  Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science, 2002, 296: 280-284
[5]  He MY, Hutchinson JW, Evans AG. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling. Materials Science and Engineering A, 2003, 345: 172-178
[6]  Karlsson AM, Hutchinson JW, Evans AG. A fundamental model of cyclic instabilities in thermal barrier systems. Journal of the Mechanics and Physics of Solids, 2002, 50: 1565-1589
[7]  Evans HE. Oxidation failure of TBC systems: An assessment of mechanisms. Surface & Coatings Technology, 2011, 206: 1512-1521
[8]  Kyaw S, Jones A, Hyde T. Predicting failure within TBC system: Finite element simulation of stress within TBC system as affected by sintering of APS TBC, geometry of substrate and creep of TGO. Engineering Failure Analysis, 2013, 27: 150-164
[9]  郑小涛, 程诗, 冯磊等. 循环移动热载荷下压力管道弯头的安定性. 压力容器, 2013, 30: 67-70 (Zheng Xiaotao, Cheng Shi, Feng Lei, et al. Shakedown analysis of the pressure piping bend under cycle moving thermal loadings. Pressure Vessel Technology, 2013, 30: 67-70 (in Chinese))
[10]  郑小涛, 彭常飞, 喻九阳 等. 热-机械载荷下U形对焊接头的安定性. 焊接学报, 2013, 34: 39-42 (Zheng Xiaotao,Peng Changfei,Yu Jiuyang,et al. Shakedown analysis of U-groove butt welded joints under cyclic thermo-mechanical loadings. Transactions of the China Welding Institution, 2013, 34: 39-42 (in Chinese))
[11]  Gokhfeld DA, Cherniavsky DF. Limit Analysis of Structures at Thermal Cycling. Alphen An der Rijn: Sijthoff & Noordhoff, 1980
[12]  Xue MD, Wang XF, Williams FW, et al. Lower-bound shakedown analysis of axisymmetric structures subjected to variable mechanical and thermal loads. International Journal of Mechanical Sciences, 1997, 39(9): 965-976
[13]  Chen HF. Lower and upper bound shakedown analysis of structures with temperature dependent yield stress. Journal of Pressure Vessel Technology, 2010, 132: 1-8
[14]  刘信声, 冯西桥. 考虑温度对材料性能影响时厚壁圆筒的安定分析. 工程力学, 1991, 8(3): 36-44 (Liu Xinsheng, Feng Xiqiao. Shakedown analysis of a thick-walled cylindrical tube considering the material property changing with temperature. Engineering Mechanics, 1991, 8(3): 36-44 (in Chinese))
[15]  杜森田, 徐秉业. 考虑外载荷和温度的运动安定定理. 固体力学学报, 1990, 11(2): 140-147 (Du Sentian, Xu Bingye. A kinematic shakedown theory considering external loading and temperature variation. Acta Mechanica Solida Sinica, 1990, 11(2): 140-147 (in Chinese))
[16]  杜森田, 刘寒冰, 陈塑寰 等. 弹塑性结构在外载和温度作用下的安定分析. 应用数学和力学, 1995, 16(8): 737-744 (Du Sentian, Liu Hanbing, Chen Suhuan, et al. Shakedown analysis of elasto-plastic structures subjected to external loading and temperature variation. Applied Mathematics and Mechanics, 1995, 16(8): 737-744 (in Chinese))
[17]  Karlsson AM, Hutchinson JW, Evans AG. A fundamental model of cyclic instabilities in thermal barrier systems. Journal of the Mechanics and Physics of Solids, 2002, 50: 1565-1589
[18]  Evans HE. Oxidation failure of TBC systems: An assessment of mechanisms. Surface & Coatings Technology, 2011, 206: 1512-1521
[19]  Mumm DR, Evans AG, Spitsberg IT. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Materialia, 2001, 49: 2329-2340
[20]  Karlsson AM, Evans AG. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems. Acta Materialia, 2001, 49: 1793-1804
[21]  Hille TS, Turteltaub S, Suiker ASJ. Oxide growth and damage evolution in thermal barrier coatings. Engineering Fracture Mechanics, 2011, 78: 2139-2152
[22]  He MY, Evans AG, Hutchinson JW. The ratcheting of compressed thermally grown thin films on ductile substrates. Acta Materialia, 2000, 48: 2593-2601
[23]  徐颖强, 李世杰, 杨小辉 等. 热循环下热障涂层结构不稳定性的数值模拟. 机械设计与制造, 2009, 5: 115-117 (Xu Yingqiang, Li Shijie, Yang Xiaohui, et al. Numerical simulation of structural instability in thermal barrier system during thermal cycling. Machinery Design & Manufacture, 2009, 5: 115-117 (in Chinese))
[24]  黄霞, 丁军, 周静 等. 热障涂层界面位移非稳定性的有限元模拟. 表面技术, 2011, 40: 97-100 (Huang Xia, Ding Jun, Zhou Jing, et al. Numerical simulation of interfacial displacement instability in TBC system. Surface Technology, 2011, 40: 97-100 (in Chinese))
[25]  Aktaa J, Sfar K, Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach. Acta Materialia, 2005, 53: 4399-4413
[26]  R?sler J, B?ker M, Aufzug K. A parametric study of the stress state of thermal barrier coatings Part I: creep relaxation. Acta Materialia, 2004, 52: 4809-4817
[27]  Mao WG, Zhou YC, Yang L, et al. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings. Mechanics of Materials, 2006, 38: 1118-1127
[28]  Zhou CG, Wang N, Xu HB. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Materials Science and Engineering A, 2007, 452: 569-574
[29]  陈良玉, 李玉, 姜华. 多层组合圆筒体的轴对称温度和热应力的通用计算方法. 材料与冶金学报, 2007, 6: 297-315 (Chen Liangyu, Li Yu, Jiang Hua. General computation method for axisymmetric temperature and thermal stress of multilayer cylinder. Journal of Materials and Metallurgy, 2007, 6: 297-315 (in Chinese))
[30]  Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method. Materials and Design, 2010, 31: 772-781
[31]  Bialas M. Finite element analysis of stress distribution in thermal barrier coatings. Surface & Coatings Technology, 2008, 202: 6002-6010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133