全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟

DOI: 10.6052/0459-1879-15-062, PP. 740-750

Keywords: 泰勒展开矩方法,纳米颗粒,瑞利-贝纳德热对流,混合,凝并,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用泰勒展开矩方法对二维瑞利-贝纳德热对流系统(1×106≤Ra≤1×108)中纳米颗粒群的混合和凝并特性进行了数值模拟.结果显示颗粒群随时间演化经历了扩散阶段、混合阶段、充分混合阶段3个阶段,随着颗粒群混合和凝并的进行,颗粒数目浓度减少,颗粒群的平均体积增大;得到了颗粒分布函数各特征量与温度相关系数以及各特征量的空间分布标准偏差在3个阶段的不同特征;得到了颗粒分布函数各阶矩以及平均体积长时间演化的渐近行为,结果与零维渐近解析解一致.最后,本文进一步研究了无量纲数(包括瑞利数Ra,斯密特数ScM,达姆科勒数Da)对颗粒群达到自保持分布时间的影响,发现该时间随着Ra和ScM的增大呈对数率减小,随着Da的增大呈线性增大

References

[1]  赵海波, 郑楚光. 离散系统动力学演变过程的颗粒群平衡模拟. 北京: 科学出版社, 2008, 1-30 (Zhao Haibo, Zheng Chuguang. Population Balance Modeling of Dynamic Evolution in Dispersed System. Beijing: Science Press, 2008, 1-30 (in Chinese))
[2]  Metzger S, Lelieveld J. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds. Atmospheric Chemistry and Physics, 2007, 7: 3163-3193
[3]  Hanna V, Ilona R. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41: 5160-5173
[4]  Gao Y, Zhang M, Liu Z, et al. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain. Atmospheric Chemistry and Physics, 2015, 15: 1093-1130
[5]  方传波, 夏智勋, 胡建新等. 强迫对流下硼颗粒燃烧特性影响因素研究. 航空学报, 2014, 35: 1-9 (Fang Chuanbo, Xia Zhixun, Hu Jianxin, et al. Influence factors of combustion characteristics of boron particle in forced convective flow. Acta Aeronautica et Astronautica Sinica, 2014, 35: 1-9 (in Chinese))
[6]  Golman B, Julklang W. Simulation of exhaust gas heat recovery from a spray dryer. Applied Thermal Engineering, 2014, 73(1): 899-913
[7]  Shi D, El-Farra NH, Li MH, et al. Predictive control of particle size distribution in particulate processes. Chemical Engineering Science, 2006, 61(1): 261-281
[8]  Lee KW. Change of particle size distribution during Brownian coagulation. Journal of Colloid and Interface Science, 1983, 92(2): 315-325
[9]  Gelbard F, Tambour Y, Seinfeld JH. Simulation of multicomponent aerosol dynamics. Journal of Colloid and Interface Science, 1980, 76(2): 541-556
[10]  Tandon P, Rosner DE. Monte Carlo simulation of particle aggregation and simultaneous restructuring. Journal of Colloid and Interface Science, 1999, 213(2): 273-286
[11]  McGraw R. Description of aerosol dynamic by the quadrature method of moments. Aerosol Science and Technology, 1997, 27(2): 255-265
[12]  于明州, 江影, 张凯. 湍动剪切微米尺度粒子凝并TEMOM模型研究. 力学学报, 2011, 43(3): 447-452 (Yu Mingzhou, Jiang Ying, Zhang Kai. The study on micro-scale particle coagulation due to turbulent shear mechanism using TEMOM model. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 447-452 (in Chinese))
[13]  Yu MZ, Lin JZ, Chan TL. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology, 2008, 42(9): 705-713
[14]  Chen ZL, Lin JZ, Yu MZ. Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. Journal of Aerosol Science, 2014, 67: 28-37
[15]  Suha SM, Zachariaha MR, Girshicka SL. Numerical modeling of silicon oxide particle formation and transport in a one-dimensional low-pressure chemical vapor deposition reactor. Journal of Aerosol Science, 2002, 33(6): 943-959
[16]  Settumba N, Garrick SC. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. Journal of Aerosol Science, 2003, 34(2): 149-167
[17]  Xie ML, Yu MZ, Wang LP. TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. Journal of Aerosol Science, 2012, 54: 32-48

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133