全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

功能梯度材料动态断裂力学的径向积分边界元法

DOI: 10.6052/0459-1879-15-150, PP. 868-873

Keywords: 径向积分边界元法,动态断裂力学,功能梯度材料,候博特方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用径向积分边界元法分析功能梯度材料动态断裂力学问题.该方法使用与弹性模量无关的弹性静力学开尔文基本解作为问题的基本解,在导出的边界-域积分方程中含有由材料的非均质性和惯性项引起的域积分,通过径向积分法将域积分转化为等效的边界积分,得到只含边界积分的纯边界积分方程;从而建立只需边界离散的无内部网格边界元算法.采用候博特方法求解关于时间二阶导数的系统离散的常微分方程组.最后通过数值算例验证本文方法的精度和有效性.

References

[1]  朱信华, 孟中岩. 梯度功能材料的研究现状与展望. 功能材料, 1998, 29(2): 121-127 (Zhu Xinhua, Meng Zhongyan. Current Research Status and Prospect of Functionally Gradient Materials. Journal of Functional Materials, 1998, 29(2): 121-127 (in Chinese))
[2]  韩杰才, 徐丽, 王宝林等. 功能梯度材料的研究进展及展望. 固体火箭技术, 2004, 27: 207-215 (Han Jiecai, Xu Li, Wamg Baolin, et al. Progress and prospects of functional gradient materials. Journal of Solid Rocket Technology, 2004, 27: 207-215 (in Chinese))
[3]  Chen YM. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code). Engineering Fracture Mechanics, 1975, 7(4): 653-660
[4]  Erdogan F. Fracture mechanics of functionally graded materials. Composites Engineering, 1995, 5(7): 753-770
[5]  Li CY, Weng GJ. Dynamic stress intensity factor of a cylindrical interface crack with a functionally graded interlayer. Mechanics of Materials, 2001, 33(6): 325-333
[6]  李玉龙, 刘元镛. 带裂纹板在冲击载荷作用下动态应力强度因子的数值计算. 航空学报, 1989, 10(5): 227-233 (Li Yulong, Liu Yuanyong. Numerical calculations of dynamic stress intensity factor of center-cracked plate under impact loading. Acta Aeronautica et Astronautic Sinica, 1989, 10(5): 227-233 (in Chinese))
[7]  Anlas G, Santare MH, Lambros J. Numerical calculation of stress intensity factors in functionally graded materials. International Journal of Fracture, 2000, 104(2): 131-143
[8]  Kim JH, Paulino GH. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering, 2002, 53(8): 1903-1935
[9]  程玉民, 嵇醒, 贺鹏飞. 动态断裂力学的无限相似边界元法. 力学学报, 2004, 36(1): 43-48 (Cheng Yumin, Ji Xing, He Pengfei. Infinite similar boundary element method for dynamic fracture mechanics. Acta Mechanica Sinica, 2004, 36(1): 43-48 (in Chinese))
[10]  李越川, 杨耀墀. 边界积分方程法在动态断裂力学中的数值计算研究. 应用力学学报, 1990, 7(1): 42-50 (Li Yuechuan, Yang Yaochi. The numerical computation study of boundary integral equation method in dynamic fracture mechanics. Chinese Journal of Applied Mechanics, 1990, 7(1): 42-50 (in Chinese))
[11]  李春雨, 邹振祝, 段祝平. 功能梯度材料裂纹尖端动态应力场. 力学学报, 2001, 33(2): 270-274 (Li Chunyu, Zou Zhenzhu, Duan Zhuping. Dynamic stress field around the crack tip in a functionally graded material. Acta Mechanica Sinica, 2001, 33(2): 270-274 (in Chinese))
[12]  Zhang Ch, Savaidis A, Savaidis G, et al. Transient dynamic analysis of a cracked functionally graded material by a BIEM. Computational Materials Science, 2002, 26: 167-174
[13]  Zhang Ch, Savaidis A. Time-domain BEM for dynamic crack analysis. Mathematics and Computers in Simulation, 1999, 50: 351-362
[14]  Zhang Ch, Sladek J, Sladek V. Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. International Journal of Solids & Structures, 2003, 40(20): 5251-5270
[15]  李树忱, 程玉民, 李术才. 动态断裂力学的无网格流行方法. 物理学报, 2006, 55(9): 4760-4766 (Li Shuchen, Cheng Yumin, Li Shucai. Meshless manifold method for dynamic fracture mechanics. Acta Physica Sinica, 2006, 55(9): 4760-4766 (in Chinese))
[16]  龙述尧, 张国虎. 基于MLPG法的动态断裂力学问题. 湖南大学学报 (自然科学版), 2012, 39(11): 41-45 (Long Shuyao, Zhang Guohu. An analysis of the dynamic fracture problem by the meshless Local Petrov- Galerkin method. Journal of Hunan University (Natural Sciences), 2012, 39(11): 41-45 (in Chinese))
[17]  Sladek J, Sladek V, Zhang Ch. An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials. Computational Materials Science, 2005, 32(3-4): 532-543
[18]  Sladek J, Sladek V, Zhang Ch. Evaluation of the stress intensity factors for cracks in continuously nonhomogeneous solids, part II: Meshless method. Mechanics of Advanced Materials and Structures, 2008, 15(6-7): 444-452
[19]  Gao XW, Zhang Ch, Sladek J, et al. Fracture analysis of functionally graded materials by a BEM. Composites Science and Technology, 2008, 68: 1209-1215
[20]  Gao XW. A boundary element method without internal cells for two-dimensional and three-dimensional elastoplastic problems. ASME Journal of Applied Mechanics, 2002, 69: 154-160
[21]  高效伟, Zhang Ch. 非均质问题中的无网格边界单元法. 固体力学学报, 2006, 27: 62-69 特刊 (Gao Xiaowei, Zhang Ch. Meshless BEM in nonhomogeneous problems. Acta Mechanic Solida Sinica, 2006, 27: 62-69 (in Chinese))
[22]  Gao XW, Guo L, Zhang Ch. Three-step multi-domain BEM solver for nonhomogeneous material problems. Engineering Analysis with Boundary Elements, 2007, 31: 965-937
[23]  Houbolt JC. A recurrence matrix solution for the dynamic response of elastic aircraft. Journal of Aeronautical Sciences, 1950, 17: 371-376

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133