全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2012 

透射边界高频失稳机理及其消除方法——SH波动

DOI: 10.6052/0459-1879-11-312, PP. 745-752

Keywords: 人工边界条件,数值失稳,波动,有限元,频散曲线,群速度

Full-Text   Cite this paper   Add to My Lib

Abstract:

用有限元法求解近场波动问题,须选取人工边界条件以实现对无限域稳定、高效的数值模拟.该文探讨了SH波导有限元数值模拟中透射边界引发的高频失稳问题.从离散模型出发,分析了内节点与人工边界节点运动方程频散曲线之间的匹配关系,揭示了高频失稳的一种机理,即二者相互耦合所得计算方案支持自发从人工边界向计算区域内行进的高频波动.提出通过调整内节点运动方程以改变这一匹配关系,从而消除失稳的措施.理论分析与数值结果表明该措施能有效地消除高频振荡失稳.

References

[1]  Bagley RL, Torvik PJ. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 1983, 27(3): 201-210
[2]  李根国, 朱正佑. 具有分数导数本构关系的非线性粘弹性Timoshenko梁动力学行为分析. 非线性动力学学报, 2001, 8(1): 19-26 (Li Genguo, Zhu Zhengyou. Dynamical behaviors of nonlinear viscoelastic Timoshenko beam with fractional derivative constitutive relation. Journal Nonlinear Dynamics in Science and Technology, 2001, 8(1): 19-26 (in Chinese)
[3]  吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用. 工程力学, 2008, 25(1): 161-166 (Wu Jie, Shangguan Wenbin. Modeling applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model. Engineering Mechanics, 2008, 25(1): 161-166(in Chinese)
[4]  朱正佑, 李根国, 程昌钧. 具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析. 应用数学和力学, 2003, 23(1): 1-10 (Zhu Zhengyou, Li Genguo, Cheng Changjun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation. Applied Mathematics and Mechanics, 2003, 23(1): 1-10 (in Chinese)
[5]  刘林超, 杨骁. 基于分数导数模型的粘弹性桩振动分析. 应用基础与工程科学学报, 2009, 17(2): 303-308 (Liu Linchao, Yang Xiao. Dynamic analysis of viscoelastic piles based on fractional derivative model. Journal of Basic Science and Engneering, 2009, 17(2): 303-308 (in Chinese)
[6]  刘林超, 闫启方, 杨骁. 分数导数粘弹性土层模型中桩基竖向振动特性研究. 工程力学, 2011, 28(8): 177-182 (Liu Linchao, Yan Qifang, Yang Xiao. Vertical vibration of single pile in soil described by fractional derivative viscoelastic model. Engineering Mechanics, 2011, 28(8): 177-182 (in Chinese)
[7]  徐长节, 蔡袁强, 吴世明. 饱和土中球空腔的瞬态动力响应. 力学学报, 2000, 32(4): 473-480 (Xu Changjie, Cai Yuanqiang, Wu Shiming. Transient dynamic response of spherical cavity in saturated soils. Acta Mechanica Sinica, 2000, 32(4): 473-480 (in Chinese)
[8]  徐长节, 蔡袁强. 粘弹性饱和土中球空腔的动力响应. 土木工程学报, 2001, 34(4): 88-92 (Xu Changjie, Cai Yuanqiang. Dynamic response of spherical cavity in viscoelastic saturated soils. China Civil Engineering Journal 2001, 34(4): 88-92 (in Chinese)
[9]  Gustafsson B, Kreiss HO, Sundstr?m A. Stability theory of difference approximations for initial boundary value problems II. Mathematics of Computation, 1972, 26(119): 649-686
[10]  Trefethen LN. Group velocity interpretation of the stability theory of Gustafsson Kreiss and Sundstrom. Journal of Computational Physics, 1983, 49(2): 199-217
[11]  Godunov S, Ryabenkii V. Spectral stability criteria for boundary value problems for non-self-adjoint difference equations. Russian Mathematical Surveys, 1963, 18(3): 1-12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133