Bagley RL, Torvik PJ. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 1983, 27(3): 201-210
[2]
李根国, 朱正佑. 具有分数导数本构关系的非线性粘弹性Timoshenko梁动力学行为分析. 非线性动力学学报, 2001, 8(1): 19-26 (Li Genguo, Zhu Zhengyou. Dynamical behaviors of nonlinear viscoelastic Timoshenko beam with fractional derivative constitutive relation. Journal Nonlinear Dynamics in Science and Technology, 2001, 8(1): 19-26 (in Chinese)
[3]
吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用. 工程力学, 2008, 25(1): 161-166 (Wu Jie, Shangguan Wenbin. Modeling applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model. Engineering Mechanics, 2008, 25(1): 161-166(in Chinese)
[4]
朱正佑, 李根国, 程昌钧. 具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析. 应用数学和力学, 2003, 23(1): 1-10 (Zhu Zhengyou, Li Genguo, Cheng Changjun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation. Applied Mathematics and Mechanics, 2003, 23(1): 1-10 (in Chinese)
[5]
刘林超, 杨骁. 基于分数导数模型的粘弹性桩振动分析. 应用基础与工程科学学报, 2009, 17(2): 303-308 (Liu Linchao, Yang Xiao. Dynamic analysis of viscoelastic piles based on fractional derivative model. Journal of Basic Science and Engneering, 2009, 17(2): 303-308 (in Chinese)
[6]
刘林超, 闫启方, 杨骁. 分数导数粘弹性土层模型中桩基竖向振动特性研究. 工程力学, 2011, 28(8): 177-182 (Liu Linchao, Yan Qifang, Yang Xiao. Vertical vibration of single pile in soil described by fractional derivative viscoelastic model. Engineering Mechanics, 2011, 28(8): 177-182 (in Chinese)
[7]
徐长节, 蔡袁强, 吴世明. 饱和土中球空腔的瞬态动力响应. 力学学报, 2000, 32(4): 473-480 (Xu Changjie, Cai Yuanqiang, Wu Shiming. Transient dynamic response of spherical cavity in saturated soils. Acta Mechanica Sinica, 2000, 32(4): 473-480 (in Chinese)
[8]
徐长节, 蔡袁强. 粘弹性饱和土中球空腔的动力响应. 土木工程学报, 2001, 34(4): 88-92 (Xu Changjie, Cai Yuanqiang. Dynamic response of spherical cavity in viscoelastic saturated soils. China Civil Engineering Journal 2001, 34(4): 88-92 (in Chinese)
[9]
Gustafsson B, Kreiss HO, Sundstr?m A. Stability theory of difference approximations for initial boundary value problems II. Mathematics of Computation, 1972, 26(119): 649-686
[10]
Trefethen LN. Group velocity interpretation of the stability theory of Gustafsson Kreiss and Sundstrom. Journal of Computational Physics, 1983, 49(2): 199-217
[11]
Godunov S, Ryabenkii V. Spectral stability criteria for boundary value problems for non-self-adjoint difference equations. Russian Mathematical Surveys, 1963, 18(3): 1-12