全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2013 

韧性材料冲击拉伸碎裂中的碎片尺寸分布规律

DOI: 10.6052/0459-1879-12-338, PP. 580-587

Keywords: 韧性材料,膨胀环,尺寸分布,韦伯分布,碎片尺寸"量子化"

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用有限元方法模拟韧性金属圆环高速膨胀过程中的碎裂过程,获得不同初始膨胀速度下碎片的样本集合.通过对碎片的尺寸进行统计分析发现(1)无论初始膨胀速度如何,碎片的归一化尺寸分布具有相似性,可以用一个具有初始阈值的Weibull分布描述,近似地,这个分布还可以简化为Rayleigh分布;(2)碎片尺寸的累积分布曲线呈现阶梯特性,表现出较明显的"量子化"特性.在上述发现基础上,建立一个Monte-Carlo模型碎裂点来自于颈缩点,颈缩之间的间距满足某种连续的Weibull分布,而碎片的尺寸为随机的若干个颈缩间距之和.概率模拟表明除非早期的颈缩间距分布很宽,否则选择的离散性必然导致碎片尺寸分布呈现某种量子化特性.采用L04工业纯铝和无氧铜试件进行了爆炸膨胀碎裂实验,回收得到的碎片尺寸分布结果与理论分析基本一致.

References

[1]  Mott NF. A theory of the fragmentation of shells and bombs. Ministry of Supply, AC4035, 1943
[2]  Grady DE. Local inertial effects in dynamic fragmentation. Journal Applied Physics, 1982, 53: 322-325
[3]  Grady DE, Benson DA. Fragmentation of metal rings by electromagnetic loading. Experimental Mechanics, 1983, 23(4): 393-400
[4]  Grady DE, Kipp ME. Geometric statistics and dynamic fragmentation. Journal Applied Physics, 1985, 58(3): 1210-1222
[5]  Grady DE, Olsen ML. A statistics and energy based theory of dynamic fragmentation. International Journal of Impact Engineering, 2003, 29(1-10): 293-306
[6]  Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation——I. Real-time and post-mortem observations in Al 6061-O. International Journal of Fracture, 2006, 142(3-4): 183-217
[7]  Miller O, Freund LB, Needleman A. Modeling and simulation of dynamic fragmentation in brittle materials. International Journal of Fracture, 1999, 96: 101-125
[8]  Zhou F, Molinari JF, Ramesh KT. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. International Journal of Solids and Structures, 2005, 42(18-19): 5181-5207
[9]  Kipp ME, Grady DE. Dynamic fracture growth and interaction in one dimension. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399-415
[10]  Mott NF. Fragmentation of shell cases. Proc R Soc London, Ser A, 1947, 189(1018): 300-308
[11]  陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟. 力学学报, 2011, 43(5): 861-870 (Chen Lei, Zhou Fenghua, Tang Tiegang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870 (in Chinese))
[12]  郑宇轩, 胡时胜, 周风华. 韧性材料高应变率拉伸碎裂过程及材料参数影响. 固体力学学报, 2012, 33(4): 358-369 (Zheng Yuxuan, Hu Shisheng, Zhou Fenghua. High strainrate tensile fragmentation process of ductile materials and the effects of material parameters. Acta Mechanica Solida Sinica, 2012, 33(4): 358-369 (in Chinese))
[13]  Ishii T, Matsushita M. Fragmentation of long thin glass rods. Journal of the Physical Society of Japan, 1992, 61(10): 3474-3477
[14]  Oddershede L, Dimon P, Bohr J. Self-organized criticality in fragmenting. Physical Review Letters, 1993, 71(19): 3107-3110
[15]  Marsili M, Zhang YC. Probabilistic fragmentation and effective power law. Physical Review Letters, 1996, 77(17): 3577-3580
[16]  Meibom A, Balslev I. Composite power laws in shock fragmentation. Physical Review Letters, 1996, 76(14): 2492-2494
[17]  Kadono T. Fragment mass distribution of platelike objects. Physical Review Letters, 1997, 78(8): 1444-1447
[18]  Inaoka H, Toyosawa E, Takayasu H. Aspect ratio dependence of impact fragmentation. Physical Review Letters, 1997, 78(18): 3455-3458
[19]  Brown WK, Wohletz KH. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. Journal of Applied Physics, 1995, 78(4): 2758-2763
[20]  Grady DE. Fragmentation of Rings and Shells: The Legacy of N.F. Mott. Spring. 2006
[21]  Grady DE. Application of survival statitics to the Impulsive fragmentation of ductile rings. In: Meyers MA, Murr LE, eds. Shock Waves and High-Strain-Rate Phenomena in Metals. New York and London: Plenum, 1981. 181-192
[22]  Zhou F, Molinari JF, Ramesh KT. Characteristic fragment size distributions in dynamic fragmentation. Applied Physics Letters, 2006, 88(26): 261918
[23]  Walsh JM. Plastic instability and particulation in stretching metal jets. Journal Applied Physics, 1984, 56(7): 1997-2006
[24]  Chou PC, Carleone J. The stability of shaped-charge jets. Journal Applied Physics, 1977, 48(10): 4187-4195
[25]  Zhou F, Molinari JF, Ramesh KT. An elastic-visco-plastic analysis of ductile expanding ring. International Journal of Impact Engineering, 2006, 33(1-12): 880-891

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133