全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2013 

黏弹性薄膜太阳帆自旋展开动力学分析

DOI: 10.6052/0459-1879-13-002, PP. 746-754

Keywords: 太阳帆,自旋展开,黏弹性,绝对坐标方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,可用于航天器推进的太阳帆自旋展开技术引起人们广泛关注.这类太阳帆可视为由中心旋转毂轮、若干柔性绳索、太阳帆薄膜和集中质量等组成的刚柔耦合多体系统.为了对系统中的太阳帆薄膜进行建模,提出了基于绝对节点坐标方法描述的黏弹性薄板单元,并对其有效性进行了验证.针对简化的"IKAROS"自旋展开太阳帆系统,采用结合自然坐标方法与绝对节点坐标方法的绝对坐标方法对其进行建模,采用广义-α方法对大规模系统动力学方程进行求解.研究了黏弹性太阳帆薄膜自旋展开过程的动力学特性,讨论了薄膜的黏弹性阻尼对自旋展开过程的影响规律.

References

[1]  Mori O, Sawada H, Hanaoka F, et al. Development of deployment system for small size solar sail mission. Transaction of JSASS Space Technology Japan, 2009, 7: 87-94
[2]  Shirasawa Y, Mori O, Miyazaki Y, et al. Analysis of membrane dynamics using multi-particle model for solar sail demonstrator "IKAROS". In: Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structure, Structural Dynamics, and Materials Conference, April 4-7, 2011, Denver, USA
[3]  Miyazaki Y, Shirasawa Y, Mori O, et al. Finite element analysis of deployment of gossamer space structure. In: Proc. of Multibody Dynamics 2011, ECCOMAS Thematic Conference, July 4-7, 2011, Brussels, Belgium, 2011
[4]  Shabana AA. Dynamics of Multibody Systems. 2nd ed. Cambridge: Cambridge University Press, 1998
[5]  Berzeri M, Shabana AA. Development of simple models for the elastic forces in absolute nodal co-ordinate formulation. Journal of Sound and Vibration, 2000, 235(4): 539-565
[6]  Dmitrochenko ON, Pogorelov D Yu. Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody System Dynamics, 2003, 10(1): 17-43
[7]  Dmitrochenko O, Mikkola A. Two simple triangular plate elements based on the absolute nodal coordinate formulation. ASME Journal of Computational and Nonlinear Dynamics, 2008, 3: 041012
[8]  Zhao J, Tian Q, Hu HY. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. ASME Journal of Computational and Nonlinear Dynamics, 2011, 6: 041013
[9]  Garcia De Jalon J, Bayo E. Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge. New York: Springer, 1994
[10]  Zhao J, Hu W, Tian Q, et al. Deployment analysis of a spinning space solar sail. In: Proceedings of the 6th Asian Conference on Multibody Dynamics, August 26-30, 2012, Shanghai
[11]  Zhao J, Tian Q, Hu HY. Deployment dynamics of a simplified spinning "IKAROS" solar sail via absolute coordinate based method. Acta Mechanica Sinica, 2013, 29(1): 132-142
[12]  Takahashi Y, Shimizu N, Suzuki K. Introduction of damping matrix into absolute coordinate formulation. In: Proceedings of the 1st Asian Conference on Multibody Dynamics, 2002, Iwaki, Fikushima
[13]  Yoo WS, Lee JH, Shon JH, et al. Large oscillations of a thin cantilever beam: physical experimental and simulation using the absolute nodal coordinate formulation. Nonlinear Dynamics, 2003, 34: 3-29
[14]  Yoo WS, Lee JH, Park SJ, et al. Large deflection analysis of a thin plate: Computer simulations and experiments. Multibody System Dynamics, 2004, 11: 185-208
[15]  Garcia-Vallejo D, Valverde J, Dominguez J. An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dynamics, 2005, 42: 347-369
[16]  Mohamed AA, Shabana AA. A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody System Dynamics, 2011, 26: 57-79
[17]  Zhang YQ, Tian Q, Chen LP, et al. Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody System Dynamics, 2009, 21: 281-303
[18]  田强, 张云清, 陈立平 等. 含分数阻尼特性元件的多体系统动力学研究. 力学学报, 2009, 41(6): 920-928 (Tian Qiang, Zhang Yunqing, Chen Liping, et al. Dynamics research on the multibody system with fractional-derivative-damper. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 920-928 (in Chinese))
[19]  曹大志, 赵治华, 任革学 等. 粘弹性体的多体系统动力学建模. 清华大学学报(自然科学版), 2012, 52(4): 483-488, 493 (Cao Dazhi, Zhao Zhihua, Ren Gexue, et al. Dynamic modeling of a viscoelastic body in a multibody system. Journal of Tsinghua University (Science and Technology), 2012, 52(4): 483-488, 493 (in Chinese))
[20]  Mohamed AA. Visco-elastic nonlinear constitutive model for the large displacement analysis of multibody systems. [PhD Thesis]. Chicago: University of Illinois at Chicago, 2011
[21]  Arnold M, Brüls O. Convergence of the generalized-scheme for constrained mechanical systems. Multibody System Dynamics, 2007, 18(2): 185-202
[22]  田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. [博士论文]. 武汉: 华中科技大学, 2009 (Tian Qiang. Flexible multibody dynamics research and application based on the absolute nodal coordinate formulation. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133