Wang X, Zheng YY, Liu HX, et al. Numerical study of the mechanism ofexplosive/impact welding using smoothed particle hydrodynamics method.Materials & Design, 2012, 35: 210-219
[2]
Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentationusing SPH/MLSPH. International Journal for Numerical Methods in Engineering,2003, 56(10): 1421-1444
[3]
Hayhurst C, Clegg RA. Cylindrically symmetric SPH simulations ofhypervelocity impacts on thin plates. International Journal of ImpactEngineering, 1997, 20(1-5): 337-348
[4]
Hiermaier S, K\"{onke D, Stilp A J, et al. Computational simulation ofthe hypervelocity impact of Al-spheres on thin plates of differentmaterials. International Journal of Impact Engineering, 1997, 20(1-5):363-374
[5]
Faraud M, Destefanis R, Palmieri D, et al. SPH simulations of debris impacts using two differentcomputer codes. International Journal of Impact Engineering, 1999, 23(1): 249-260
贾光辉, 黄海. 超高速撞击航天器二次碎片云能量特性分析.北京航空航天大学学报, 2007, 33(3): 257-260 (Jia Guanghui, Huang Hai.Characters on kinetics energy of debris cloud in spacecraft. Journal ofBeijing University of Aeronautics and Astronautics, 2007, 33(3): 257-260 (inChinese))
[8]
管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究.高压物理学报,2005, 19(2): 132-138 (Guan Gongshun, Zhang Wei, Pang Baojun,et al. A studyof penetration hole diameter in thin al-plate by hypervelocity impact ofal-spheres. Chinese Journal of High Pressure Physics, 2005, 19(2): 132-138(in Chinese))
[9]
贾斌, 马志涛, 庞宝君. 含泡沫铝防护结构的超高速撞击数值模拟研究. 高压物理学报, 2009, 23(6): 453-459(Jia Bin, Ma Zhitao, Pang Baojun. Numerical simulation investigation in hypervelocity impact on shieldstructure containing aluminum foam. Chinese Journal of High Pressure Physics, 2009, 23(6): 453-459 (inChinese))
[10]
徐金中, 汤文辉, 徐志宏. 超高速碰撞碎片云特征的SPH方法数值分析. 高压物理学报, 2008, 22(4): 377-383 (XuJinzhong, Tang Wenhui, Xu Zhihong. Numerical analysis of the characteristics of debris clouds produced byhypervelocity impacts using SPH method. Chinese Journal of High Pressure Physics, 2008, 22(4): 377-383(in Chinese))
[11]
Seo S, Min O, Lee J. Application of an improved contact algorithm forpenetration analysis in SPH. International Journal of Impact Engineering,2008, 35(6): 578-588
[12]
Lee M, Yoo YH. Analysis of ceramic/metal armour systems. InternationalJournal of Impact Engineering, 2001, 25(9): 819-829
[13]
张伟, 胡德安, 韩旭. 弹体侵彻运动陶瓷/金属复合装甲SPH模拟. 固体力学学报, 2010, 31(S1): 70-75 (ZhangWei, Hu Dean, Han Xu. Simulation on projectile penetrating into moving ceramic/metal composite armor usingSPH method. Acta Mechanica Solida Sinica, 2010, 31(S1): 70-75 (in Chinese))
[14]
Benz W, Asphaug E. Simulations of brittle solids using smooth particlehydrodynamics. Computer Physics Communications, 1995, 87(1-2): 253-265
[15]
Bonet J, Kulasegaram S. Correction and stabilization of smooth particlehydrodynamics methods with applications in metal forming simulations.International Journal for Numerical Method in Engineering, 2000, 47(6):1189-1214
[16]
Cleary PW, Prakash M, Ha J. Novel applications of smoothed particlehydrodynamics (SPH) in metal forming. Journal of Materials ProcessingTechnology, 2006, 177(1-3): 41-48
[17]
Heinstein M, Segalman D. Simulation of orthogonal cutting with smoothed particle hydrodynamics.Report no. SAND97-1961, Sandia National Laboratoties, 1997
[18]
Limido J, Espinosa C, Salaun M, et al. A new approach of high speedcutting modelling: SPH method. Journal of Physiscs IV, 2006, 134(1):1195-1200
[19]
姜涛, 张宪, 乔欣, 等. 基于SPH法的土壤切削刀具三维数值模拟及优化. 机电工程, 2009, 26(6): 44-46 (JiangTao, Zhang Xian, Qiao Xin, et al. 3-D numerical simulation and optimization of solid cutting tool based onSPH. Journal of Mechanical and Electrical Engineering, 2009, 26(6): 44-46 (in Chinese))
[20]
Oger G, Doring M, Alessandrini B, et al. Two-dimensional SPH simulationsof wedge water entries. Journal of Computational Physics, 2006, 213(2):803-822
[21]
Gong K. Water entry with of a wedge based on SPH model with an improvedboundary treatment. Journal of Hydrodynmics, 2009, 21(6): 750-757
[22]
Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid-structureinteraction by SPH. Computers & Structures, 2007, 85(11-14): 879-890
[23]
Rafiee A, Thiagarajan KP. An SPH projection method for simulatingfluid-hypoelastic structure interaction. Computer Methods in AppliedMechanics and Engineering, 2009, 198(33-36): 2785-2795
[24]
Müller M, Schirm S, Teschner M. Interactive blood simulation forvirtual surgery based on smoothed particle hydrodynamics. Technology andHealth Care, 2004, 12(1): 25-31
[25]
Sinnott M, Cleary PW, Prakash M. An investigation of pulsatile blood flow in a bifurcation arteryusing a grid-free method. In: Fifth International Conference on CFD in the Process Industries. Melbourne,2006. 13-15
[26]
Jin Q,-Pang WM,-Nguyen BP, et al. Particle-based simulation of blood flow and vessel wallinteractions in virtual surgery. In: 2010 Symposium on Information and Communication Technology. Hanoi,-2010.128-133
[27]
Tanaka N, Takano T, Masuzawa T. 3-dimensional micro-simulation of blood flow with SPH method. Nihon Kikai Gakkai Ryutai Kogaku Bumon Koenkai Koen Ronbunshu (CD-ROM), 2004, 82: 7-12
[28]
Tanaka N, Takano T. Microscopic-scale simulation of blood flow uing SPHmethod. International Journal of Computational Methods, 2005, 2(4): 555-568
[29]
Tsubota K, Wada S, Kamada H, et al. A particle method for blood flowsimulation, application to flowing red blood cells and platelets. Journal ofthe Earth Simulator, 2006, 5: 2-7
[30]
Bonet J, Lok T -S L. Variational and momentum preservation aspects ofsmooth particle hydrodynamic formulations. Computer Methods in AppliedMechanics and Engineering, 1999, 180(1-2): 97-115
[31]
Bonet J, Kulasegaram S, Rodriguez-Paz MX, et al. Variational formulationfor the smooth particle hydrodynamics (SPH) simulation of fluid and solidproblems. Computer Methods in Applied Mechanics and Engineering, 2004,193(12-14): 1245-1256
Dyka CT, Ingel RP. An approach for tension instability in smoothedparticle hydrodynamics. Computers & Structures, 1995, 57(4): 573-580
[34]
Dyka CT, Randles PW, Ingel RP. Stress points for tension instability inSPH. International Journal for Numerical Methods in Engineering, 1997,40(13): 2325-2341
[35]
张雄, 刘岩. 无网格法. 北京: 清华大学出版社, 2004 (Zhang Xiong, Liu Yan.Meshless Method. Beijing: Tsinghua University Press, 2004 (in Chinese))
[36]
刘更, 刘天祥, 谢琴. 无网格法及其应用. 西安: 西北工业大学出版社, 2005 (LiuGeng, Liu Tianxiang, Xie Qin. Meshless Method and its Application. Xi'an:Northwestern Polytechnical University Press, 2005 (in Chinese))
[37]
Courant R. Variational methods for the solution of problems of equilibriumand vibrations. Bulletin of the American Mathematical Sociaty, 1943, 49(1):1-23
[38]
Clough RW. The finite element method in plane stress analysis. In: Proceedings of American Society ofCivil Engineers, 2nd Conference on Electronic Computations, Pittsburg, 1960. 345-378
[39]
李晋先. 活动边界问题的时-空有限元配位法. 数值计算与计算机应用, 1987, 8: 136-144 (Li Jinxian. A space-time finite element collocation method formoving boundary problems. Journal of Numerical Method and ComputerApplications, 1987, 8: 136-144 (in Chinese))
[40]
Yang FL, Chen CH, Young DL. A novel mesh regeneration algorithm for 2DFEM simulations of flows with moving boundary. Journal of ComputationalPhysics, 2011, 230(9): 3276-3301
[41]
Lucy LB. A numerical approach to the testing of the fission hypothesis.Astronomical Journal, 1977, 82(12): 1013-1024
[42]
Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: Theory and application to non-sphericalstars. Monthly Notices of the Royal Astronomical Society, 1977, 181(2): 375-389
[43]
Gingold RA, Monaghan JJ. Binary fission in damped rotating polytropes.Monthly Notices of the Royal Astronomical Society, 1978, 184(2): 481-499
[44]
Gingold RA, Monaghan JJ. A numerical study of the Roche and Darwinproblems for polytropic stars. Monthly Notices of the Royal AstronomicalSociety, 1979, 188: 45-58
[45]
Gingold RA, Monaghan JJ. The Roche problem for polytropes in centralorbits. Monthly Notices of the Royal Astronomical Society, 1980, 191:897-924
[46]
Gingold RA, Monaghan JJ. Kernel estimates as a basis for general particle methods in hydrodynamics.Journal of Computational Physics, 1982, 46(3): 429-453
[47]
Monaghan JJ, Gingold RA. Shock simulation by the particle method SPH. Journal of ComputationalPhysics, 1983, 52(2): 374-89
[48]
Monaghan JJ. Extrapolating B splines for interpolation. Journal of Computational Physics, 1985,60(2): 253-62
Lee WH.Newtonian hydrodynamics of the coalescence of black holes with neutron stars II: Tidallylocked binaries with a soft equation of state.Monthly Notices of the Royal Astronomical Society, 1998,308: 780-794
[57]
Monaghan JJ. Simulating free surface flows with SPH. Journal of Computer Physics, 1994, 110(2):399-406
[58]
Ferrari A, Dumbser M, Toro EF, et al. A new 3D parallel SPH scheme forfree surface flows. Computers & Fluids, 2009, 38(6): 1203-1217
[59]
Zhu Y, Fox P J, Morris JP. A pore-scale numerical model for flow throughporous media. International Journal for Numerical and Analytical Methods inGeomechanics, 1999, 23(9): 881-904
[60]
Morris JP, Zhu Y, Fox PJ. Parallel simulations of pore-scale flow throughporous media. Couputers and Geotechnics, 1999, 25(4): 227-246
[61]
Jiang FM, Mó nica SA Oliveira, Antonio CM Sousa. Mesoscale SPHmodeling of fluid flow in isotropic porous media. Computer PhysicsCommunications, 2007, 176(7): 471-480
[62]
Shao SD. Incompressible SPH flow model for wave interactions with porous media. CoastalEngineering, 2010, 57(3): 304-316
[63]
Pereira GG, Prakash M, Cleary PW. SPH modelling of fluid at the grainlevel in a porous medium. Applied Mathematical Modelling, 2011, 35(4):1666-1675
[64]
Monaghan JJ, Kocharyan A. SPH simulation of multi-phase flow. ComputerPhysics Communications, 1995, 87(1-2): 225-235
[65]
Valizadeh A, Shafieefar M, Monaghan JJ, et al. Modeling two-phase flowsusing SPH method. Journal of Applied Sciences, 2008, 8(21): 3817-3826
[66]
Monaghan JJ. SPH compressible turbulence. Monthly Notice of the RoyalAstronomical Society, 2002, 335(3): 843-852
[67]
Liu MB, Liu GR, Zong Z, et al. Computer simualation of high explosiveexplosion using smoothed particle hydrodynamics methodology. Computers &Fluids, 2003, 32(3): 305-322
[68]
强洪夫, 王坤鹏, 高巍然.基于完全变光滑长度SPH方法的高能炸药爆轰过程数值试验. 含能材料, 2009, 17(1):27-31 (Qiang Hongfu, Wang Kunpeng, Gao Weiran. Numerical simulation of highexplosive detonation process using SPH method with fully variable smoothinglengths. Chinese Journal of Energetic Materials, 2009, 17(1): 27-31 (inChinese))
[69]
Swegle JW, Attaway SW. On the feasibility of using smoothed particlehydrodynamics for underwater explosion. Computational Mechanics, 1995,17(3): 151-168
[70]
Liu MB, Liu GR, Zong Z, et al. Smoothed particle hydrodynamics fornumerical simulation of underwater explosions. Computational Mechanics,2003, 30(2): 106-118
[71]
Yang G, Han X, Hu DA. Computer simulation of two-dimensionallinear-shaped charge jet using smoothed particle hydrodynamics. EngineeringComputations, 2011, 28(1): 58-75
[72]
Tanaka K. Numerical studies of explosive welding by SPH. MaterialsScience Forum, 2007, 566: 61-64