全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

径向非均匀介质中圆形夹杂的动应力分析

DOI: 10.6052/0459-1879-14-204, PP. 539-543

Keywords: 径向非均匀介质,变系数波动方程,均匀圆夹杂,动应力集中系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于复变函数理论,研究了径向非均匀弹性介质中均匀圆夹杂对弹性波的散射问题.介质的非均匀性体现在介质密度沿着径向按幂函数形式变化且剪切模量是常数.利用坐标变换法将变系数的非均匀波动方程转为标准亥姆霍兹(Helmholtz)方程.在复坐标系下求得非均匀基体和均匀夹杂同时存在的位移和应力表达式.通过具体算例分析了圆夹杂周边的动应力集中系数(DSCF).结果表明基体与夹杂的波数比和剪切模量比,基体的参考波数和非均匀参数对动应力集中有较大的影响.

References

[1]  Pao YH, Mow CC. Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane and Russak, New York, 1973
[2]  黎在良, 刘殿魁. 固体中的波. 科学出版社, 1995 (Li Zailiang, Liu Diankui. Wave in Solid. Beijing: Science Press, 1995 (in Chinese))
[3]  Mow CC, Mente LJ. Dynamic stresses and displacements around cylindrical discontinuities due to plane harmonic shear waves. ASME Journal of Applied Mechanics, 1963, 30(4): 598-604
[4]  杨在林, 闫培雷, 刘殿魁. SH波对浅埋弹性圆柱及裂纹的散射与地震动.力学学报, 2009, 41(2): 229-235 (Yang Zailin, Yan Peilei, Liu Diankui. Scattering of SH-waves and ground motion by an elastic cylindrical inclusion and a crack in half space. Acta Mechanica Sinica, 2009, 41(2): 229-235 (in Chinese))
[5]  Kubair DV, Bhanu-Chandar B. Stress concentration factor due to a circular hole in functionally graded panels under uniaxial tension. International Journal of Mechanical Sciences, 2008, 50(4): 732-742
[6]  Yang Q, Gao CF, Chen W. Stress analysis of a functional graded material plate with a circular hole. Archive of Applied Mechanics, 2010, 80(8): 895-907
[7]  Mohammadi M, Dryden JR, Jiang L. Stress concentration around a hole in a radially inhomogeneous plate. International Journal of Solids and Structures, 2011, 48(3): 483-491
[8]  Yang Q, Gao CF. Dynamic stress analysis of a functionally graded material plate with a circular hole. Meccanica, 2013, 48(1): 91-101
[9]  Kokkorakis GC, Fikioris JG, Fikioris G. Field induced in inhomogeneous spheres by external sources. I. The scalar case. Journal of the Acoustical Society of America, 2002, 112(4): 1297-1306
[10]  Martin PA. Acoustic scattering by inhomogeneous spheres. Journal of the Acoustical Society of America, 2002, 111(5): 2013-2018
[11]  Bilgin E, Yapar A. An acoustic inverse scattering problem for spheres with radially inhomogeneous compressibility. Journal of the Acoustical Society of America, 2002, 133(4): 2097-2104
[12]  Zouros GP, Kokkorakis GC. Green's function of radial inhomogeneous spheres excited by internal sources. Journal of the Acoustical Society of America, 2011, 129(1): 24-31
[13]  Fang XQ, Liu JX, Zhang LL, et al. Dynamic stress from a subsurface cylindrical inclusion in a functionally graded material layer under anti-plane shear waves. Materials and Structures, 2010, 44(1): 67-75
[14]  Liu DK, Gai BZ, Tao GY. Applications of the method of complex functions to dynamic stress concentrations. Wave Motion, 1982, 4(3): 293-304

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133