全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

矩形液池热毛细对流转捩途径研究

DOI: 10.6052/0459-1879-14-296, PP. 422-429

Keywords: 热毛细对流,分岔,转捩途径,温度振荡

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究矩形液池热毛细对流的分岔转捩.通过测量流体内部温度振荡情况,详细研究了热毛细对流的转捩过程和转捩途径.实验发现,矩形液池热毛细对流的转捩过程依次经历了定常、规则振荡、不规则振荡的阶段.对于不同普朗特数的硅油在不同长高比情况下,通向混沌的途径不同.在转捩过程中,随着温差的增加,普朗特数在16(1cSt)以下和普朗特数为25(1.5cSt)、长高比为26的硅油热毛细对流主要以准周期分岔的转捩方式为主;而普朗特数为25以上的则以倍周期分岔的转捩方式为主;两种分岔有时还会伴随有切分岔形式的出现.实验中还观察到了表面波动和对流涡胞振荡等现象.

References

[1]  胡文瑞, 徐硕昌. 微重力流体力学. 北京: 科学出版社, 1999. 95-104 (Hu Wenrui, Xu Shuochang. Microgravity Fluid Mechanics. Beijing: Science Press, 1999. 95-104 (in Chinese))
[2]  胡文瑞, 等. 微重力科学概论. 北京: 科学出版社, 2010. 78-86 (Hu Wenrui, et al. An Introduction to Microgravity Science. Beijing: Science Press, 2010. 78-86 (in Chinese))
[3]  Gollub JP, Benson SV. Many routes to turbulent convection. Journal of Fluid Mechanics, 1980, 100(3): 449-470
[4]  Mukutmoni D, Yang KT. Thermal-convection in small enclosures-an atypical bifurcation sequence. International Journal of Heat and Mass Transfer, 1995, 38(1): 113-126
[5]  Stella F, Bucchignani E. Rayleigh-Benard convection in limited domains: Part 1-Oscillatory flow. Numerical Heat Transfer Part A-Applications, 1999, 36(1): 1-16
[6]  Bucchignani E, Stella F. Rayleigh-Benard convection in limited domains: Part 2 -Transition to chaos. Numerical Heat Transfer Part A-Applications, 1999, 36(1): 17-34
[7]  Bucchignani E, Mansutti D. Horizontal thermal convection in a shallow cavity:oscillatory regimes and transition to chaos. International Journal of Numerical Methods for Heat & Flow, 2000, 10(2): 179-195
[8]  Bucchignani E, Mansutti D. Horizontal thermocapillary convection of succinonitrile: steady state, instabilities, and transition to chaos. Physical Review E, 2004, 69(5): 056319
[9]  胡文瑞, 唐泽眉, 李凯. 浮区热毛细对流. 力学进展, 2009, 39(3): 360-377 (Hu Wenrui, Tang Zemei, Li Ka. Floating zone thermocapillary convection. Advances in Mechanics, 2009, 39(3): 360-377 (in Chinese))
[10]  Zhu P, Duan L, Kang Q. Transition to chaos in thermocapillary convection. International Journal of Heat and Mass Transfer, 2013, 57: 457-464
[11]  朱鹏. 热毛细对流转捩问题研究. [博士论文]. 北京: 中国科学院大学, 2013. 53-64 (Zhu Peng. Study on the transition of thermocapillary convection. [PhD Thesis]. Beijing: University of Chinese Academy of Science, 2013. 53-64 (in Chinese))
[12]  吴笛, 张洋, 段俐等. Bénard-Marangoni对流温度振荡转捩实验研究. 力学学报, 2011, 43(6): 1054-1060 (Wu Di, Zhang Yang, Duan Li, et al. Experimental investigation of the transition of temperature oscillation in Bénard-Marangoni convection. Chinese Journal of Theoretical and Applied Mechani, 2011, 43(6): 1054-1060 (in Chinese))
[13]  陈滨. 混沌波形的相关性-相空间轨迹与混沌序列自相关特性. 西安: 西安电子科技大学出版社, 2011. 30-33 (Chen Bin. The Relativity of Chaotic Waveform-Phase Space Trajectory and the Chaotic Sequence Autocorrelation Properties. Xi'an: Xidian University Press, 2011. 30-33 (in Chinese))
[14]  舒斯特HG. 混沌学引论. 朱鋐雄, 林圭年 译. 第3版. 成都: 四川教育出版社, 2010. 152-152 (Schuster HG. A introduction to chaos. Zhu Hongxiong, Lin Guinian, translation. The third edition. Chengdu: Sichuan Educational Press, 2010. 152-152)
[15]  陈瑞熊. 用混沌理论解释湍流现象. http://blog.sina.com.cn/s/blog_53d3accd0102e0f6.html. 2012-11-30 (Chen Ruixiong. Explain the turbulence phenomena with the chaos theory.
[16]  周彬, 朱鹏, 段俐等. 矩形液池内热毛细对流的流动不稳定性. 力学与实践, 2013, 35(3): 39-45 (Zhou Bin, Zhu Peng, Duan Li, et al. Flow instability of thermocapillary convection in rectangular pool. Mechanics and Engineering, 2013, 35(3): 39-45 (in Chinese))

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133